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Solving PDEs using deep learning

Consider the generic PDE:
L(u(z)) = f(z), Vzel
» Solution approximated by a network u(x; ) with parameters .

» Minimize PDE residual at collocation points {x;} [Lagaris et al., 2000]: Solve
1 N
* _ . P -~ L. P . 2
P —argflmﬂ(df), (zp) = N;:l 1Lz ) — f(z:)l]

» Rediscovered as Physics Informed Neural Nets (PINNs) with deeper
structures [Raissi et al., 2019].

» However, solves one instance of the PDE — must be retrained if f changes.
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Solving PDEs using DL

We are interested in approximating the solution operator

S:F—V, S(f)=u(sf)

» Network-based operator learning with shallow networks [Chen & Chen, 1995].
» DeepONets: extension to deeper architectures [Lu et al., 2021]
» Comprise two subnetworks: the trunk (basis) and the branch (basis).
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Solving PDEs using DL

We are interested in approximating the solution operator

S:F—V, S(f)=u(sf)

Network-based operator learning with shallow networks [Chen & Chen, 1995].
DeepONets: extension to deeper architectures [Lu et al., 2021]

Comprise two subnetworks: the trunk (basis) and the branch (basis).
Neural operators — an alternate strategy to approximate S

vV VvV vy VvYy

Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel
Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...
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We are interested in approximating the solution operator

S:F—V, S(f)=u(sf)

Network-based operator learning with shallow networks [Chen & Chen, 1995].
DeepONets: extension to deeper architectures [Lu et al., 2021]

Comprise two subnetworks: the trunk (basis) and the branch (basis).
Neural operators — an alternate strategy to approximate S

vV VvV vy VvYy

Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel
Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...

v

This talk: Operator Networks that mimic (approximate) variational form™ of the
PDE.

[* Variationally Mimetic Operator Networks; Patel, Ray, Abdelmalik, Hughes, Oberai; CMAME, 2024 ]
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Problem Statement

» Consider a generic linear elliptic PDE:

L(u(z);0(x)) = f(x), VxeQ,
B(u(x);0(x)) = n(x), Vaxely,
u(x) =0, Ve ely,

where f € F C L*(Q),n e N C L*(T},), 0 € T C L™=(Q).

» The variational formulation: find u € V C H, such thatV w € V,

a(w,u;0) = (w, f) + (w,n)r,.

» The solution operator is

S:X=FxTxN-—VCH,
(f,0,m) = u(; f,0,m)

This mapping can be non-linear in 6.
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Discrete weak formulation

» Evaluate approximate solution in finite-dimensional space
Vi = span{¢;(x) : 1 <i < q}.

» Discrete weak formulation: find " € V" such that vV w" € V*,

a(w",u";0") = (", ") + (w,n")r,,.

» Any function v" € V" can be written as
(@) =VIe(@), V=(0,,0), @@ =(d1(x), - de(x)) "

Plugging this into discrete weak form gives...
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Discrete weak form

» Linear system of equations,
K(0"U = MF + MN

where the matrices are given by

Kij(0") = a(¢i, ¢550"), My = (¢i,¢5), Mij = (di,¢5)r, 1<i,j<q.

» Discrete solution operator is
Shoxh=F T x N — V"
(fh, oh,nh) — uh(‘; fh70h,nh) — B(fh,’nh, Gh)T@
where

B(f",0".7") =U = K~'(0")(MF + MN).

VarMiON will mimic this structure!
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VarMiON

Evaluate (f, 6, n) at some fixed sensor nodes to get the discrete sample vectors

-~

F= (f({fl), 7f(55k‘)—ra é = (9(&:\1)7 79(55’&‘))T7 J/\?: (77(51{)7 aﬂ@Z')T
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VarMiON

The network is comprises several sub-networks with latent dimension p:

Nonlinear branch pXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

Nonlinear trunk
()

a = £ =~
X X X X
[ — [ o
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?

non-linear CNN that outputs a matrix
Nonlinear branch pPXDp

D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

a2 = £l
X X X
- - —

dx1

Nonlinear trunk
()

T
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?
» Two linear branches with learnable matrices A, A

Nonlinear branch pPXp
D(®)

MatVecProd

Linear branch px1
AF

o >
X X
- -

k' x1
Linear branch px1

@—’ AN

dx1 linear (learnable) transformations
Nonlinear trunk px1

@_’ ()
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?
» Two linear branches with learnable matrices A, A

» Non-linear trunk (basis of VarMiON): x + 7(x) = (11(x), - - - 7p(x)) "

Nonlinear branch pPXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

a2 = £l
X X X
- - —

dx1
Nonlinear trunk
(@) non-linear basis of VarMiON

T
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VarMiON

VarMiON operator is
S:R* x R* x R¥ — V"™ = span{ri(z): 1 <i < p}
(F,0,N)~u(;F,0,N)=6(/"1"6""r

where o R o
B(F,©,H) = D(®)(AF + AN).

Nonlinear branch pXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

Nonlinear trunk
()

a = £ =
X X X X
[ — [ o
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VarMiON

VarMiON operator is

S:R* x R* x R¥ — V"™ = span{ri(z): 1 <i < p}
(F,,N) — a(;F,0,N) = B(f" 1", ")~

where o - — L
B(F,0,H)=D(O©)(AF + AN). ‘
|
Compare this to the discrete solution operator: /
S FM X T NP V" %

(f", 0" ") s G 10" 0™ < B 0" 0M) T @

where -
B(f",0",n") = K '(6")(MF + MN).
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VarMiON

In comparison with the variational formulation
» Can prove D is the reduced order counterpart of K~ (p < ¢q)
» While the basis ® are fixed, = are learned from training data.

In comparison with a vanilla DeepONet
» DeepONet typically has a single nonlinear branch for inputs.
» VarMiON explicitly constructs matrix operators. DeepONet does not.
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Training the VarMiON

For 1 < j < J, consider distinct samples (f;,0;,n;) € X.

Obtain the discrete approximations (f;',07, 7)) € X"

Find the discrete numerical solution u} = S"(f}', 0%, n}).

Choose output nodes {z;}/~, to sample the numerical solution v/, = u” (z;).
Generate the input vectors (F}, ©;, N;).

Collect input & output to form training set with J x L samples

o 0 M0~

S:{(Eaéjvl/\]\-ﬁmlvu?l):1§j§‘]7 1SZSL}7

Find the network weights that minimize the loss function

J L
DRSO IUES SRR AL
j=1 =1

where %) are all the trainable parameters of the VarMiON.
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Error Estimates

The generalization error for any (f,0,n) € X

-~

E(f,0,m) = |S(f,0,m) = S(F,©,N)| 1.
Split into four errors:

E(f.0.m) < (IS(f,0,m) = S(f5,05.m;)l[L2 — Stabiliy of S
+S(f5,05,n5) — Sh(fjh, 0%, 1")|| > — Numerical error in generating data

+||Sh(f] ,67] 7773) g(ﬁ éj,]/v\j)||L2 —> Training error of VarMiON
+|8(F;,©;,N;) — S(F,©,N)| .2 — Stability of VarMioN 3
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Error Estimates

Generalization error estimate (Patel et al., 2024)
If X := F x T x N is compact, the non-linear branch is Lipschitz, i.e.,

|ID(®) — D(®)|2 < Lp||© — &2

Then, the generalization error can be bounded as

1 1 1
Erom=¢ (eh Tet Vet nt ment Lm)

where

e, — numerical error in training data
€s — covering estimate
€, — training error

a, o,y — quadrature convergence rates

g

The constant C depends on the stability constants of S and S.
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Numerical Example

F'l
Steady-state heat conduction
-V - (0(z)Vu(z)) = f(x), Ve, I, 7 I,
0(x)Vu(z) n(x) = nx), Vzel,
u(x) =0, Ve el
T

n

Input: thermal conductivity 6, heat sources f, and heat flux n. Output:
temperature w.

Inputs: Gaussian Random Fields.

Networks with two inputs (6, f) and three inputs (9, f, n).

Compare VarMiON and vanilla DeepONet with same p

Similar number of network parameters. Identical trunk architecture.

Robustness: sampling (spatially uniform or random) and trunk functions
(ReLU or RBF).

v

vVvyVvyyvyy

D. Ray VarMiON 14



Numerical Example: Two Inputs

» 10,000 samples generated using Fenics.

» 9,000 for training/validation and 1,000 for testing.
» Latent space p = 64 for DeepONet and VarMiON.
» Average value of relative L, error reported below.

Case Model Number of parameters  Relative L, error
Randomly sampled input  DeepONet 111,248 1.07 £ 0.39 %
with ReLU Trunk VarMiON 109,077 0.96 + 0.25 %
Uniformly sampled input  DeepONet 49,928 1.98 + 0.79 %
with ReLU Trunk VarMiON 46,345 1.01 + 0.39 %
Uniformly sampled input  DeepONet 17,911 1.39 £ 0.60 %
with RBF Trunk VarMiON 17,409 0.84 + 0.40 %
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Numerical Example: Two inputs

Density of scaled L, error (ReLU trunk and uniform spatial sampling).

1.6 DeepONet
1.4 = VarMiON

0 2 4 6 8 10
Val. error (in %)
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Numerical Example: Two inputs

Predictions by VarMiON and DeepONet.

f 7] u (true) u (VarMiON) error u (DeepONet) error
0.46 % 2.37 %
015 -
06
05 -
05
0.4 04 0.05,
03 03 0.00
07 06
0.6 0.4 02
05 o1
02
04
00
0s
o os 02
o 0.5 03 01
0.4 02
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Numerical Example: Three Inputs

» Input functions f, 6 and 7.
» 10,000 samples generated using Fenics.
» 9,000 for training/validation and 1,000 for testing — same as two input case!
» Latent space p = 72 for DeepONet and VarMiON.
» Average value of relative L, error reported below.
Case Model Number of parameters  Relative L. error
Uniformly sampled input DeepONet 31,143 6.29 + 3.43%
with RBF Trunk VarMiON 31,849 236 +1.13%
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Numerical Example: Three inputs

Density of scaled L. error (RBF trunk and uniform spatial sampling).

DeepOMet

0.5
B varMioN

0.4

0.3

Density

0.2

0.1

0 5 10 15 20 25 30

Val. error (in %)
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Numerical Example: Three inputs

Predictions by VarMiON and DeepONet.

f 2] n u (true) u (VarMiON) error u (DeepONet) error

1.57 % 5.95 %
060 — top
— bottom

055

050

nos\/‘

-
N

— wp
— bottom

20
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Numerical Example: Comparison with MIONet

MIONet has been proposed [Jin et al., 2022] to handle multiple input functions.

Separate branch for each f;, followed by a Hadamard product

B=B' @B 0 0B, uzifi, fa)=p8"T(x)

“/ J;l\ = Fl Branch //31\

AN N Subnen \

VRN o

(f2) Fz Branch / 2
/

ug(a; fu < fn)

Subnet 1 \/3
Bvanch \
Dot —>
Trunk ( } R
Subnet
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Numerical Example: Comparison with MIONet

Comparison with MIONet as the number of training samples n is varied

Training dataset size Model Relative L error

_ DeepONet 10.23 +5.20
n = 1000 MIONet 88.07 + 69.68
VarMiON 4.27 + 2.23

_ DeepONet 9.00 & 5.63
n = 2000 MIONet 85.03 + 123.77
VarMiON 4.04 4+ 1.86

_ DeepONet 7.19 £3.75
n = 4000 MIONet 88.39 4 62.10
VarMiON 2.90 £+ 1.50

_ DeepONet 6.28 £ 3.55
n = 6000 MIONet 82.89 + 34.19
VarMiON 2.74+1.31
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Extension to non-linear PDEs

Consider a time-independent nonlinear advection-diffusion-reaction equation

-V - (0Vu)+a -Vu+pu—f = 0,inQ,
U = g, on F97
—6Vu-n = n,only

where a := a(u), p := p(u).
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Extension to non-linear PDEs

Consider a time-independent nonlinear advection-diffusion-reaction equation

-V - (0Vu)+a -Vu+pu—f = 0,inQ,
U = g, on F97
—6Vu-n = n,only

where a := a(u), p := p(u).

The weak form: find u € V = H'(Q), s.t. Vw € V,
aw,u) = (w,f)+ (w,n)r, + (~0Vw - n+ fu,g)r,
where
a(w,u) := (Vw,0Vu) + (w,a - Vu+ pu) — (w,0Vu - n)r, + (—0Vw - n + fw, u)r,
which is linear in w but nonlinear in w.

B is parameter imposing a Nitsche-type Dirichlet boundary enforcement.
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Extension to non-linear PDEs

Approximating on a finite dimensional space V" spanned by {¢:}2_,, we arrive at
R(U)=MF + MN + MG

where U, F, N, G are coefficients of u", f* n", ¢" resp. and R : R? — RY is
nonlinear
Ri(U) :=a(¢:;, U ®) V1<i<q.
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Extension to non-linear PDEs

Approximating on a finite dimensional space V" spanned by {¢:}2_,, we arrive at
R({U)=MF + MN + MG

where U, F, N, G are coefficients of u", f* n", ¢" resp. and R : R? — RY is
nonlinear
Ri(U) :=a(¢:;, U ®) V1<i<q.

Thus, assuming inversion is possible
h 1 ~ - T
u () = (R_ (MF + MN + MG)) ®(x)
We would like to mimic this structure. Note:
» Need to linearly transform F', N, G to R? for ¢ basis functions.

» Add the transforms and pass through non-linear R~*.
» Due to homogeneity of the operator, R™*(0) = 0.
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Extension to non-linear PDEs

VarMiON: For a latent dimension p
Branch subnet

B(F,N,G)=N(Z), Z=AF+ AN + AG € R’

where A in a nonlinear network mimicking R™*.
The VarMiON operator is given by:

SYI(F,N,G)=1u(;F,N,@)=B(F,N,@)" .

However this may not map zero input to zero output!
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Extension to non-linear PDEs

VarMiON: For a latent dimension p
Branch subnet

B(F,N,G)=N(Z), Z=AF+ AN + AG e R"

where A in a nonlinear network mimicking R™*.
The VarMiON operator is given by:

SYM(F,N,G)=1u(; F,N,G) = B(F,N,G)"r.
However this may not map zero input to zero output!
VarMiON-c: For a latent dimension p
Branch subnet
B.(F,N,G)=ZoN(Z), Z=AF + AN + AG c R”
where A in a nonlinear network mimicking R™*.
The VarMiON-c operator is given by:

— — —

SYYF,N,G)=u(;F,N,G) = B.(F,N,G)"r.
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Extension to non-linear PDEs

kx1
Linear branch px1
AF

?

kK x1

\ 4

Linear branch px1
AN

Sum
_

?

,l

px1

k// x 1 Y
Nonlinear Net

Linear branch pxl1

7

AG
px1
dx1
Nonlinear trunk px1
7(z)
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Numerical Example

Regularized Eikonal equation

—0.01Au(z) + |Vu(z)| = f(x), VxeQ=][0,1]°
u(x) =0, Ve o,

v

Input: f —the (inverse) speed of travel through the medium

Output: u(x) —the minimal time to travel from « to 99

Formulated as advection-diffusion-reaction with 6 = 0.01, p = 0,

a = Vu(z)/|Vu(x)|.

Inputs: Gaussian Random Fields with F € R0,

Compare VarMiON, VarMiON-c and vanilla DeepONet with p = 100.

vy

vy
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Numerical Example

Model Number of parameters  Relative L error
DeepONet (130) 146,650 5.78 + 1.50 %
DeepONet (200) 225,400 4.79 £1.46 %
DeepONet (512,256,128,100) 712,324 2.35+0.36 %
VarMiON (100,100,100,100) 143,200 244 +0.41%
VarMiON-c (100,100,100,100) 143,200 221 +£043%

» The numbers in the brackets denote the widths of the hidden layers in the
branch.

» Branches for all models have an output layer of width 100 at the end.

DeepONet(150) DeepONet(200) DeepONet(big) VarMiON VarMiON-c

0.04 0.100

0.02 0.075
0.050
0.00
0.025
-0.05
—0.02 0.000

-0.02 -0.10

Predictions for f = 0.
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Numerical Example

VarMiON (100,100,100,100), VarMiON-c (100,100,100,100) and DeepONet (130)
u (true) u (VarMioN) U (VarMiON-c) u (DeepONet)

f
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Numerical Example

DeepONet (130)

> 1.5
E—
2 1 DeepONet (200)
Q
o 05 DeepONet (512,256,128,100)
0 VarMiON (100,100,100,100)
15 VarMiON-c (100,100,100,100)
Z
= 1
C
G 0.5
a
0
11 N 111 100101 e |
1 S | 01 00 MCME( | U L 1 1
— 1
0 LIRLIT B I
b n i im0 I
2 4 6 8 10 12 14 16 18

Val. error (in %)
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Concluding remarks

» VarMiON: an operator network that mimics variational formulation.

» Handle multiple inputs — precise specification of branch nets based on weak
form.

» Error analysis reveals important components.

» Numerical results point to better and more robust performance.

» Possible extension to nonlinear advection-diffusion-reaction.

» Need a custom architecture based on the weak form.

» Next? Sobolev loss function, other nonlinear operators, physics-informed

residuals, time-dependent problems, hyperbolic systems, and specification of
geometry, etc.
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Concluding remarks

» VarMiON: an operator network that mimics variational formulation.

» Handle multiple inputs — precise specification of branch nets based on weak
form.

» Error analysis reveals important components.

» Numerical results point to better and more robust performance.

» Possible extension to nonlinear advection-diffusion-reaction.

» Need a custom architecture based on the weak form.

» Next? Sobolev loss function, other nonlinear operators, physics-informed

residuals, time-dependent problems, hyperbolic systems, and specification of
geometry, etc.

Questions?
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Parameters for linear PDE experiments

2 input case:

FeR™ ©cR™ p=64

3 input case:

FeR™, O©cR™ NecR® p=712
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