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Solving PDEs using deep learning

Consider the generic PDE:

L(u(x)) = f(x), ∀ x ∈ Ω

▶ Solution approximated by a network û(x;ψ) with parameters ψ.

▶ Minimize PDE residual at collocation points {xi} [Lagaris et al., 2000]: Solve

ψ∗ = argmin
ψ

Π(ψ), Π(ψ) =
1

N

N∑
i=1

∥L(û(xi;ψ))− f(xi)∥2

▶ Rediscovered as Physics Informed Neural Nets (PINNs) with deeper
structures [Raissi et al., 2019].

▶ However, solves one instance of the PDE – must be retrained if f changes.

D. Ray VarMiON 2



Solving PDEs using DL

We are interested in approximating the solution operator

S : F −→ V, S(f) = u(.; f)

▶ Network-based operator learning with shallow networks [Chen & Chen, 1995].

▶ DeepONets: extension to deeper architectures [Lu et al., 2021]

▶ Comprise two subnetworks: the trunk (basis) and the branch (basis).

▶ Neural operators – an alternate strategy to approximate S

▶ Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel
Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...

▶ This talk: Operator Networks that mimic (approximate) variational form∗ of the
PDE.

[* Variationally Mimetic Operator Networks; Patel, Ray, Abdelmalik, Hughes, Oberai; CMAME, 2024 ]
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Problem Statement

▶ Consider a generic linear elliptic PDE:

L(u(x); θ(x)) = f(x), ∀ x ∈ Ω,

B(u(x); θ(x)) = η(x), ∀ x ∈ Γη,

u(x) = 0, ∀ x ∈ Γg,

where f ∈ F ⊂ L2(Ω), η ∈ N ⊂ L2(Γη), θ ∈ T ⊂ L∞(Ω).

▶ The variational formulation: find u ∈ V ⊂ H1
g such that ∀ w ∈ V,

a(w, u; θ) = (w, f) + (w, η)Γη .

▶ The solution operator is

S : X = F × T ×N −→ V ⊂ H1
g

(f, θ, η) 7→ u(.; f, θ, η)

This mapping can be non-linear in θ.
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Discrete weak formulation

▶ Evaluate approximate solution in finite-dimensional space
Vh = span{ϕi(x) : 1 ≤ i ≤ q}.

▶ Discrete weak formulation: find uh ∈ Vh such that ∀ wh ∈ Vh,

a(wh, uh; θh) = (wh, fh) + (w, ηh)Γη .

▶ Any function vh ∈ Vh can be written as

vh(x) = V ⊤Φ(x), V = (v1, · · · , vq)⊤, Φ(x) = (ϕ1(x), · · · , ϕq(x))
⊤.

Plugging this into discrete weak form gives...
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Discrete weak form

▶ Linear system of equations,

K(θh)U =MF + M̃N

where the matrices are given by

Kij(θ
h) = a(ϕi, ϕj ; θ

h), Mij = (ϕi, ϕj), M̃ij = (ϕi, ϕj)Γη 1 ≤ i, j ≤ q.

▶ Discrete solution operator is

Sh : X h = Fh × T h ×N h −→ Vh

(fh, θh, ηh) 7→ uh(.; fh, θh, ηh) = B(fh, ηh, θh)⊤Φ

where
B(fh, θh, ηh) = U =K−1(θh)(MF + M̃N).

VarMiON will mimic this structure!
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VarMiON

Evaluate (f, θ, η) at some fixed sensor nodes to get the discrete sample vectors

F̂ = (f(x̂1), · · · , f(x̂k)
⊤, Θ̂ = (θ(x̂1), · · · , θ(x̂k))

⊤, N̂ = (η(x̂b
1), · · · , η(x̂b

k′)⊤

Γ!

Γ"

Ω
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VarMiON

The network is comprises several sub-networks with latent dimension p:

▶ Non-linear branch net: Θ̂ 7→D(Θ̂) ∈ Rp×p

▶ Two linear branches with learnable matrices A, Ã

▶ Non-linear trunk (basis of VarMiON): x 7→ τ (x) = (τ1(x), · · · τp(x))⊤

Sum

Dot

MatVecProd

Nonlinear branch

Linear branch

Linear branch

Nonlinear trunk
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VarMiON

VarMiON operator is

Ŝ : Rk × Rk × Rk′
−→ Vτ = span{τi(x) : 1 ≤ i ≤ p}

(F̂ , Θ̂, N̂) 7→ û(.; F̂ , Θ̂, N̂) = β(fh, ηh, θh)⊤τ

where
β(F̂ , Θ̂, Ĥ) =D(Θ̂)(AF̂ + ÃN̂).

Compare this to the discrete solution operator:

Sh : Fh × T h ×N h −→ Vh

(fh, θh, ηh) 7→ uh(.; fh, θh, ηh) = B(fh, ηh, θh)⊤Φ

where
B(fh, θh, ηh) =K−1(θh)(MF + M̃N).
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VarMiON

In comparison with the variational formulation

▶ Can prove D is the reduced order counterpart of K−1 (p ≪ q)

▶ While the basis Φ are fixed, τ are learned from training data.

In comparison with a vanilla DeepONet

▶ DeepONet typically has a single nonlinear branch for inputs.

▶ VarMiON explicitly constructs matrix operators. DeepONet does not.

D. Ray VarMiON 10



Training the VarMiON

1. For 1 ≤ j ≤ J , consider distinct samples (fj , θj , ηj) ∈ X .

2. Obtain the discrete approximations (fh
j , θ

h
j , η

h
j ) ∈ X h.

3. Find the discrete numerical solution uh
j = Sh(fh

j , θ
h
j , η

h
j ).

4. Choose output nodes {xl}Ll=1 to sample the numerical solution uh
jl = uh

j (xl).

5. Generate the input vectors (F̂j , Θ̂j , N̂j).

6. Collect input & output to form training set with J × L samples

S = {(F̂j , Θ̂j , N̂j ,xl, u
h
jl) : 1 ≤ j ≤ J, 1 ≤ l ≤ L},

Find the network weights that minimize the loss function

Π(ψ) =
1

J

J∑
j=1

Πj(ψ), Πj(ψ) =
L∑

l=1

wl

(
uh
jl − Ŝψ(F̂j , Θ̂j , N̂j)[xl]

)2

.

where ψ are all the trainable parameters of the VarMiON.
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Error Estimates

The generalization error for any (f, θ, η) ∈ X

E(f, θ, η) := ∥S(f, θ, η)− Ŝ(F̂ , Θ̂, N̂)∥L2 .

Split into four errors:

E(f, θ, η) ≤ ∥S(f, θ, η)− S(fj , θj , ηj)∥L2 −→ Stability of S

+∥S(fj , θj , ηj)− Sh(fh
j , θ

h
j , η

h
j )∥L2 −→ Numerical error in generating data

+∥Sh(fh
j , θ

h
j , η

h
j )− Ŝ(F̂j , Θ̂j , N̂j)∥L2 −→ Training error of VarMiON

+∥Ŝ(F̂j , Θ̂j , N̂j)− Ŝ(F̂ , Θ̂, N̂)∥L2 −→ Stability of VarMiON Ŝ
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Error Estimates

Generalization error estimate (Patel et al., 2024)
If X := F × T ×N is compact, the non-linear branch is Lipschitz, i.e.,

∥D(Θ̂)−D(Θ̂′)∥2 ≤ LD∥Θ̂− Θ̂′∥2.

Then, the generalization error can be bounded as

E(f, θ, η) ≤ C
(
ϵh + ϵs +

√
ϵt +

1

kα/2
+

1

(k′)α′/2
+

1

Lγ/2

)
where

ϵh → numerical error in training data

ϵs → covering estimate

ϵt → training error

α, α′, γ → quadrature convergence rates

The constant C depends on the stability constants of S and Ŝ.
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Numerical Example

Steady-state heat conduction

−∇ · (θ(x)∇u(x)) = f(x), ∀ x ∈ Ω,

θ(x)∇u(x) · n(x) = η(x), ∀ x ∈ Γη,

u(x) = 0, ∀ x ∈ Γg.

Γ!

Γ" Γ"

Γ!

Ω

▶ Input: thermal conductivity θ, heat sources f , and heat flux η. Output:
temperature u.

▶ Inputs: Gaussian Random Fields.

▶ Networks with two inputs (θ, f) and three inputs (θ, f, η).

▶ Compare VarMiON and vanilla DeepONet with same p

▶ Similar number of network parameters. Identical trunk architecture.

▶ Robustness: sampling (spatially uniform or random) and trunk functions
(ReLU or RBF).
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Numerical Example: Two Inputs

▶ 10,000 samples generated using Fenics.

▶ 9,000 for training/validation and 1,000 for testing.

▶ Latent space p = 64 for DeepONet and VarMiON.

▶ Average value of relative L2 error reported below.

Case Model Number of parameters Relative L2 error

Randomly sampled input DeepONet 111,248 1.07 ± 0.39 %
with ReLU Trunk VarMiON 109,077 0.96 ± 0.25 %

Uniformly sampled input DeepONet 49,928 1.98 ± 0.79 %
with ReLU Trunk VarMiON 46,345 1.01 ± 0.39 %

Uniformly sampled input DeepONet 17,911 1.39 ± 0.60 %
with RBF Trunk VarMiON 17,409 0.84 ± 0.40 %
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Numerical Example: Two inputs

Density of scaled L2 error (ReLU trunk and uniform spatial sampling).
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Numerical Example: Two inputs

Predictions by VarMiON and DeepONet.
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Numerical Example: Three Inputs

▶ Input functions f , θ and η.

▶ 10,000 samples generated using Fenics.

▶ 9,000 for training/validation and 1,000 for testing → same as two input case!

▶ Latent space p = 72 for DeepONet and VarMiON.

▶ Average value of relative L2 error reported below.

Case Model Number of parameters Relative L2 error

Uniformly sampled input DeepONet 31,143 6.29 ± 3.43%
with RBF Trunk VarMiON 31,849 2.36 ± 1.13 %
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Numerical Example: Three inputs

Density of scaled L2 error (RBF trunk and uniform spatial sampling).
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Numerical Example: Three inputs

Predictions by VarMiON and DeepONet.
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Numerical Example: Comparison with MIONet

MIONet has been proposed [Jin et al., 2022] to handle multiple input functions.

Separate branch for each fi, followed by a Hadamard product

β = (β1 ⊙ β2 ⊙ · · · ⊙ βn), uθ(x; f1, · · · , fn) = β⊤τ(x)
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Numerical Example: Comparison with MIONet

Comparison with MIONet as the number of training samples n is varied

Training dataset size Model Relative L2 error

n = 1000
DeepONet 10.23± 5.20

MIONet 88.07± 69.68
VarMiON 4.27± 2.23

n = 2000
DeepONet 9.00± 5.63

MIONet 85.03± 123.77
VarMiON 4.04± 1.86

n = 4000
DeepONet 7.19± 3.75

MIONet 88.39± 62.10
VarMiON 2.90± 1.50

n = 6000
DeepONet 6.28± 3.55

MIONet 82.89± 34.19
VarMiON 2.74± 1.31
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Extension to non-linear PDEs

Consider a time-independent nonlinear advection-diffusion-reaction equation

−∇ · (θ∇u) + a · ∇u+ ρu− f = 0, in Ω,

u = g, on Γg,

−θ∇u · n = η, on Γη

where a := a(u), ρ := ρ(u).

The weak form: find u ∈ V ≡ H1(Ω), s.t. ∀w ∈ V,

a(w, u) = (w, f) + (w, η)Γη + (−θ∇w · n+ βw, g)Γg

where

a(w, u) := (∇w, θ∇u) + (w,a · ∇u+ ρu)− (w, θ∇u · n)Γg + (−θ∇w · n+ βw, u)Γg

which is linear in w but nonlinear in u.

β is parameter imposing a Nitsche-type Dirichlet boundary enforcement.
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Extension to non-linear PDEs

Approximating on a finite dimensional space Vh spanned by {ϕi}qi=1, we arrive at

R(U) =MF + M̃N + M̆G

where U ,F ,N ,G are coefficients of uh, fh, ηh, gh resp. and R : Rq → Rq is
nonlinear

Ri(U) := a(ϕi,U
⊤Φ) ∀ 1 ≤ i ≤ q.

Thus, assuming inversion is possible

uh(x) =
(
R−1(MF + M̃N + M̆G)

)⊤
Φ(x)

We would like to mimic this structure. Note:

▶ Need to linearly transform F ,N ,G to Rq for q basis functions.

▶ Add the transforms and pass through non-linear R−1.

▶ Due to homogeneity of the operator, R−1(0) = 0.

D. Ray VarMiON 24



Extension to non-linear PDEs

Approximating on a finite dimensional space Vh spanned by {ϕi}qi=1, we arrive at

R(U) =MF + M̃N + M̆G

where U ,F ,N ,G are coefficients of uh, fh, ηh, gh resp. and R : Rq → Rq is
nonlinear

Ri(U) := a(ϕi,U
⊤Φ) ∀ 1 ≤ i ≤ q.

Thus, assuming inversion is possible

uh(x) =
(
R−1(MF + M̃N + M̆G)

)⊤
Φ(x)

We would like to mimic this structure. Note:

▶ Need to linearly transform F ,N ,G to Rq for q basis functions.

▶ Add the transforms and pass through non-linear R−1.

▶ Due to homogeneity of the operator, R−1(0) = 0.

D. Ray VarMiON 24



Extension to non-linear PDEs

VarMiON: For a latent dimension p
Branch subnet

β(F̂ , N̂ , Ĝ) = N (Ẑ), Ẑ = AF̂ + ÃN̂ + ĂĜ ∈ Rp

where N in a nonlinear network mimicking R−1.
The VarMiON operator is given by:

ŜNL(F̂ , N̂ , Ĝ) = û(.; F̂ , N̂ , Ĝ) = β(F̂ , N̂ , Ĝ)⊤τ .

However this may not map zero input to zero output!

VarMiON-c: For a latent dimension p
Branch subnet

βc(F̂ , N̂ , Ĝ) = Ẑ⊙N (Ẑ), Ẑ = AF̂ + ÃN̂ + ĂĜ ∈ Rp

where N in a nonlinear network mimicking R−1.
The VarMiON-c operator is given by:

ŜNL(F̂ , N̂ , Ĝ) = û(.; F̂ , N̂ , Ĝ) = βc(F̂ , N̂ , Ĝ)⊤τ .
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Extension to non-linear PDEs

Sum

Dot

Nonlinear Net 

Linear branch

Linear branch

Nonlinear trunk

Linear branch
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Numerical Example

Regularized Eikonal equation

−0.01∆u(x) + |∇u(x)| = f(x), ∀ x ∈ Ω = [0, 1]2,

u(x) = 0, ∀ x ∈ ∂Ω,

▶ Input: f – the (inverse) speed of travel through the medium

▶ Output: u(x) – the minimal time to travel from x to ∂Ω

▶ Formulated as advection-diffusion-reaction with θ = 0.01, ρ = 0,
a = ∇u(x)/|∇u(x)|.

▶ Inputs: Gaussian Random Fields with F̂ ∈ R1024.

▶ Compare VarMiON, VarMiON-c and vanilla DeepONet with p = 100.
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Numerical Example

Model Number of parameters Relative L2 error

DeepONet (130) 146,650 5.78 ± 1.50 %
DeepONet (200) 225,400 4.79 ± 1.46 %

DeepONet (512,256,128,100) 712,324 2.35 ± 0.36 %
VarMiON (100,100,100,100) 143,200 2.44 ± 0.41 %

VarMiON-c (100,100,100,100) 143,200 2.21 ± 0.43 %

▶ The numbers in the brackets denote the widths of the hidden layers in the
branch.

▶ Branches for all models have an output layer of width 100 at the end.

DeepONet(150) DeepONet(200) DeepONet(big) VarMiON VarMiON-c
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Numerical Example

VarMiON (100,100,100,100), VarMiON-c (100,100,100,100) and DeepONet (130)

f u (true) u (VarMiON) Error
2.72 %

u (VarMiON-c) Error
2.55 %

u (DeepONet) Error
8.24 %

2.08 % 1.92 % 4.18 %

2.29 % 2.04 % 6.25 %

2.92 % 2.30 % 6.90 %

2.14 % 1.80 % 4.70 %
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Numerical Example
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Concluding remarks

▶ VarMiON: an operator network that mimics variational formulation.

▶ Handle multiple inputs – precise specification of branch nets based on weak
form.

▶ Error analysis reveals important components.

▶ Numerical results point to better and more robust performance.

▶ Possible extension to nonlinear advection-diffusion-reaction.

▶ Need a custom architecture based on the weak form.

▶ Next? Sobolev loss function, other nonlinear operators, physics-informed
residuals, time-dependent problems, hyperbolic systems, and specification of
geometry, etc.

Questions?
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Parameters for linear PDE experiments

2 input case:

F̂ ∈ R100, Θ̂ ∈ R100, p = 64

3 input case:

F̂ ∈ R144, Θ̂ ∈ R144, N̂ ∈ R24, p = 72
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