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Forward and inverse problems

Consider a forward problem

F : x ∈ Ωx 7→ y ∈ Ωy, Ωx ∈ RNx , Ωy ∈ RNy

Temperature  
sensors 

(N in each direction)

For example the heat conduction PDE:

∂u(s, t)

∂t
− κ∆u(s, t)) = 0

u(s, 0) = u0(s)
where

u(s, t) → temperature at location s at time t

u0(s) → initial temperature at location s

κ → thermal conductivity of material

Forward problem F : Given u0(s) at the sensor nodes determine u(s, T )
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Bayesian inference

Challenges with inverse problems:

▶ Inverse map is not well posed.

▶ Noisy measurements.

▶ Need to encode prior knowledge about x.

Bayesian framework: x and y modelled by random variables X and Y .

AIM: Given a measurement Y = y approximate the conditional (posterior)
distribution

PX|Y (x|y)

and sample from it.

sampler
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Bayesian inference: challenges

▶ Posterior sampling techniques, such as Markov Chain Monte Carlo, are
prohibitively expensive when dimension of X is large.

▶ Characterization of priors for complex data

For example, x data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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Conditional Generative Adversarial Network (cGAN)

▶ Proposed by Mirza et al. (2014)

▶ Learning distributions conditioned on another field.

▶ Comprises two neural networks, g and d.

z

g x~

Generator

d

Critic

x~

x

y y

y

Generator network:

▶ g : Ωz × Ωy → Ωx.

▶ Latent variable Z ∼ PZ , e.g.
N(0, I). Also Nz ≪ Nx.

▶ (x,y) sampled from true PXY

Critic network:

▶ d : Ωx × Ωy → R.

▶ d tries to detect fake samples.

▶ d(x,y) large for real x, small
otherwise.
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Conditional Wasserstein GAN (cWGAN)

▶ A cGAN variant proposed by Adler et al. (2018).

▶ Given Y = y and Z ∼ PZ we get a random variable

Xg = g(Z,y), Xg ∼ P g
X|Y .

▶ Objective function

Π(g, d) = E
(X,Y )∼PXY

Z∼PZ

[
d(X,Y )− d

(
g(Z,Y ),Y

)]
▶ Define

LipX = {f : Ωx × Ωy → R s.t. f is 1-Lipschitz in x}

▶ Find g∗ and d∗ by solving the minmax problem

d∗(g) = argmax
d∈LipX

Π(g, d)

g∗ = argmin
g

Π(g, d∗(g)).
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Conditional Wasserstein GAN (cWGAN)

▶ Adler et al. (2018) proved that the minmax problem is equivalent to

g∗ = argmin
g

E
Y ∼PY

[
W1(PX|Y , P g

X|Y )
]

where W1 is the Wasserstein-1 distance (hence the name of the method.)

▶ d∗ helps estimate the W1 distance (Kantorovich-Rubinstein duality)

▶ How is d ∈ LipX enforced? → using a gradient penalty term

d∗(g) = argmax
d

[Π(g, d)− λGPx]

where

GPx = E
δ∼U(0,1)

[
(∥∂1d(h(x,y,z, δ),y)∥2 − 1)2

]
h(x,y,z, δ) = δx+ (1− δ)g(z,y).

Note the constraint is only on the first argument of d!
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Posterior sampling using cWGANs

Steps:

▶ Acquire samples Sx = {x1, ...,xN}, where xi ∼ P
prior
X .

▶ Use forward map F to generate paired dataset

S = {(x1,y1), ..., (xN ,yN )} where yn = F(xn) + noise.

▶ Train a cWGAN on S.

▶ For a new test measurement ŷ, generate samples using g∗.

▶ Evaluate statistics using Monte Carlo.

E
X∼PX|Y

[ℓ(X)] ≈
1

K

K∑
i=1

ℓ(g∗(z(i), ŷ)), z(i) ∼ PZ

g*
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Interpreting fields as images for some applications

▶ RGB image: y ∈ RN×M×C , N ×M → resolution, C = 3 → channels

▶ Grayscale: y ∈ RN×M×1 with a single channel

▶ Discrete solution to a PDE in 2D with C variables: y ∈ RN×M×C

=
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An efficient version of cWGAN

Original model by Adler et al.

▶ Designed for CT imaging applications

▶ In g, latent variable z stacked as additional channel of y

Input to g = [y,z] ∈ RN×M×(C+1), y ∈ RN×M×C , z ∈ RN×M×1

−→ Nz scales with Ny! No dim. reduction

▶ Specialized architecture required for critic to avoid mode collapse
−→ larger network and higher training cost!
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An efficient version of cWGAN

Modified version∗

▶ Developed and tested on physics-based problems governed by PDEs

▶ Conditional instance normalization (CIN) to handle g inputs of different
shapes

y ∈ RN×M×C , z ∈ RNz

−→ Nz no longer depends on Ny – get dim. reduction!
−→ introduce multi-level stochasticity (see next slide)

▶ Simpler for critic architecture used

* The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse
problems (R., Patel, Ramaswamy, Oberai); Numerical Algebra, Control and Optimization, 2022.

D. Ray cWGANS 11



Special architecture of generator g

U-Net architecture when x, y have tensored (image-like) structure.
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Solving the inverse heat conduction equation

Consider the PDE

∂u(s, t)

∂t
−∇ · (κ(s)∇u(s, t)) = 0, ∀ (s, t) ∈ (0, 2π)2 × (0, 1]

u(s, 0) = u0(s), ∀ s ∈ (0, 2π)2

u(s, t) = 0, ∀ s ∈ ∂(0, 2π)2 × (0, 1]

▶ x: discrete initial temperature field.

▶ y: noisy discrete final temperature field.

▶ F : Finite difference solver for the PDE.

▶ We assume a constant conductivity κ = 0.2.
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Inferring initial condition: non-parametric prior

Assuming x to given by (heat stamped) MNIST handwritten digits and
Nx = Ny = 28× 28 = 784

Training samples:
x y (clean) y

0.0

2.0

4.0

0.0

1.2

2.4

-0.9

0.9

2.7 x y (clean) y

0.0

2.0

4.0

0.0

1.1

2.2

-1.0

0.9

2.9

x y (clean) y

0.0

2.0

4.0

0.0

0.7

1.4

-1.1

0.4

2.0 x y (clean) y

0.0

2.0

4.0

0.0

1.2

2.3

-0.8

1.0

2.8

cWGAN trained using latent dimension Nz = 100.
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SD can be used as a metric for UQ

Testing trained cGAN (statistics with K = 800 z samples)

D. Ray cWGANS 15



Benefit of CIN strategy

Low ensemble variability and poor reconstruction with original stacked approach!
y x

mean (CIN) SD (CIN)

mean (stacked) SD (stacked)
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1.9

0.0

2.0

4.0

0.0

2.0

4.0

0.0

0.6

1.1

0.0

2.0

4.0

0.0

0.6

1.1

y x

mean (CIN) SD (CIN)

mean (stacked) SD (stacked)

-0.8

0.9

2.7

0.0

2.0

4.0

0.0

2.0

4.0

0.0

0.5

1.0

0.0

2.0

4.0

0.0

0.5

1.0

See paper for more experiments and a discussion on generalizability!
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A theoretical issue with interpreting convergence

Recall that
▶ We require d : Ωx × Ωy → R to satisfy d ∈ Lipx

▶ If the model is “perfectly trained" we have

g∗ = argmin
g

E
Y ∼PY

[
W1(PX|Y , P g

X|Y )
]

▶ Original proof by Adler et al. use a technical assumption to interchange
argmax

d
and EY ∼PY , which is not easy to interpret.

Assume we can find a the sequence {(g∗
n, d

∗
n)}n, where n ∈ Z+ is the number of

weights/biases, s.t.

lim
n→∞

Π(g∗
n, d

∗
n) = lim

n→∞
E

Y ∼PY

[
W1(PX|Y , P

g∗
n

X|Y )
]
= 0.

This does not imply

lim
n→∞

W1(PX|Y , P
g∗
n

X|Y ) = 0 ( ⇐⇒ P
g∗
n

X|Y
weak−→ PX|Y )

Can be proved only up to a subsequence! Thus, statistics (mean, variance,
moments, etc) converge only subsequentially!
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A novel cWGAN∗

Key elements:

▶ We require d : Ωx × Ωy → R to satisfy d ∈ Lipxy, i.e. 1-Lipschitz in x and y.

▶ Then we can prove that

g∗ = argmin
g

W1(PXY , P g
XY )

where P g
XY = P g

X|Y PY . Thus, we are approximating the joint density!

▶ If we can find the sequence {(g∗
n, d

∗
n)}n such that

lim
n→∞

Π(g∗
n, d

∗
n) = lim

n→∞
W1(PXY , P

g∗
n

XY ) = 0,

then we weakly converge to the true joint density, P g∗
n

XY

weak−→ PXY

⇐⇒ lim
n→∞

E
P

g∗
n

XY

[ℓ(X,Y )] = E
PXY

[ℓ(X,Y )] ∀ ℓ ∈ Cb(Ωx × Ωy).

* Solution of physics-based inverse problems using conditional generative adversarial networks with full
gradient penalty (R., Esandi, Dasgupta, Oberai); CMAME, 2023.
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A novel cWGAN

But our goal is to approximate the conditional density, or rather estimate the
conditional expectations

E
PX|Y

[q(X)|y] .

The following result shows us how to do this robustly:

Theorem: R., Esandi, Dasgupta, Oberai (2023)
Let ŷ be such that PY (ŷ) ̸= 0 and q ∈ Cb(Ωx). Then, given ϵ > 0 (and under some
mild assumptions), there exists σ > 0 and an integer N such that∣∣∣∣∣ E

PX|Y
[q(X)|ŷ]− E

P
σ,n
XY

[q(X)]

∣∣∣∣∣ < ϵ ∀ n ≥ N,

where Pσ,n
XY (x,y) = P

g∗
n

X|Y (x|y)PYσ (y) and PYσ (y) ≡ N(ŷ, σ2I).

Implication: Instead of feeding the measurement ŷ to g∗, feed ŷ + δy where
δy ∼ N(0, σ2I)
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Approximating posterior expectations

Steps:

▶ Acquire samples Sx = {x1, ...,xN}, where xi ∼ P
prior
X .

▶ Use forward map F to generate dataset S = {(x1,y1), ..., (xN ,yN )}
▶ Train a cWGAN on S but with a “full gradient penalty" term.

▶ For a new test measurement ŷ, generate samples by passing z and perturbed y
samples through g∗.

▶ Approximate expectation using Monte Carlo.

E
X∼PX|Y

[ℓ(X)] ≈ E
P̂

g∗
XYσ

[ℓ(X)] ≈
1

K

K∑
i=1

ℓ(g∗(z(i),y(i))), z(i) ∼ PZ , y(i) ∼ N(ŷ, σ2I)

g*
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Simple 1D problems

Consider the pair of 1D random variables defined by:

Tanh + Γ : x = tanh(y) + γ where γ ∼ Γ(1, 0.3) and y ∼ U(−2, 2)

Bimodal : x = (y + w)1/3 where y ∼ N (0, 1) and w ∼ N (0, 1)

Swissroll : x = 0.1t sin(t) + 0.1w, y = 0.1t cos(t) + 0.1v, t = 3π/2(1 + 2h),

where h ∼ U(0, 1), w ∼ N (0, 1) and v ∼ N (0, 1)
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Simple 1D problems
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Simple 1D problems

Errors between PX|Y and P g
X|Y :

Can expect benefit of Full-GP approach on multi-modal problems!
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Solving the inverse heat conduction equation

Goal: Infer initial temp. field from noisy final temp. field
Assuming x to given by a rectangular inclusion and Nx = Ny = 28× 28 = 784

Training samples:

cWGANs trained using latent dimension Nz = 3!
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Solving the inverse heat conduction equation

Test sample, whose reference mean as SD are available

y x
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Reference Partial-GP Full-GP / Y = 0 Full-GP / Y = 0.31
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Solving the inverse heat conduction equation

L2 error in mean and SD
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Predicting arrival times for wildfire spread∗

▶ Substantial increase in wildfire activity around the globe.

▶ Complicated physics coupling atmosphere and wildfire dynamics.

▶ Correct initial state of wildfire and atmosphere variables required for
successful simulations.

▶ Mandel et al. (2012) found that
■ Precise wildfire history during initial spread – key for model initialization.

■ History well represented by arrival time map.

Data assimilation problem: Given satellite measurements of active fire during
initial spread, determine high resolution fire arrival map for initial period.

* Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models with Satellite Data for
Initializing Wildfire Forecasts (Shaddy, R., Faruell, Calaza, Mandel, Haley, Hilburn, Mallia, Kochanski,
Oberai); preprint on arXiv, 2023.
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Predicting arrival times for wildfire spread

We make use of WRF-SFIRE: combines a weather forecast model with a
fire-spread model.

Strategy:

▶ Generated 20 fire simulations using WRF-SFIRE

▶ Data augmented by rotations and translations to generate 10,000
high-resolution arrival maps xi ∈ R512×512

▶ Corresponding measurements yi ∈ R512×512 obtained by coarsening and
occluding.

▶ 8000 training samples, 2000 validation samples (to tune hyper-parameters)
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Predicting arrival times for wildfire spread

Fire arrived first in the darkest regions of the plot
F
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 𝒚

Sample 1 Sample 2 Sample 3 Sample 4

Trained cWGAN with full GP and Nz = 100
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Predicting arrival times for wildfire spread

▶ Tested on real wildfire data for fires in California between 2020 - 2022.

▶ Data collected from Suomi-NPP satellite, detections 2-4 times a day.

▶ High confidence measurements (top row); high+nominal confidence
measurements (bottom row)

(a) Bobcat
IR Time 56:15

(d) Mineral
IR Time 51:15

(c) Oak
IR Time 53:46

(b) Tennant
IR Time 54:04

IR Time: Number of hours since start of fire.
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Predicting arrival times for wildfire spread

▶ 200 realization for each type of input measurement.

▶ Weighted combination of realizations

xi = 0.2× xhigh
i + 0.8× xhigh+nom

i

used to compute pixel-wise mean and SD

(a) Bobcat (c) Oak(b) Tennant (d) Mineral
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Predicting arrival times for wildfire spread

Estimate ignition time based on smallest arrival time compared with California
Department of Forestry and Fire Protection (CAL FIRE) reporting and another
SVM based method by Farguell et al. (2021).

Wildfire CAL FIRE cWGAN SVM cWGAN Offset SVM Offset
Tennant 23:07 23 : 48 21:11 41 minutes 1 hour 56 minutes

Oak 21:10 21 : 30 20:45 20 minutes 25 minutes
Mineral 23:40 23 : 04 27:53 36 minutes 4 hours 13 minutes

See preprint for additional details and comparisons (eg. F-score, false alarm ratio,
etc)
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Conclusion

▶ A cWGAN algorithm for Bayesian inference

▶ What do we gain?
■ Ability to represent and encode complex prior data.

■ Dimension reduction since Nz ≪ Nx.

■ Sampling from cGAN is quick and easy.

■ Uncertainty quantification in terms of SD.

▶ Need (x,y) pairs to train – supervised algorithm.

▶ A theoretically sound variant using full gradient penalty of the critic

▶ Variants of algorithm successfully used for medical imaging tasks, such as
image segmentation∗ and imputation∗∗.

Questions?

* Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks (Moazami,
R., Pelletier, Oberai); IEEE Trans. Med. Imaging, 2023.

** Conditional Generative Learning for Medical Image Imputation (Raad, R., Hwang, Gill, Duddalwar,
Oberai); Scientific Reports, 2023.
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