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» PDEs used to model physical processes.

v

Typically solved using FDM, FVM, FEM, ...

v

Many-query applications need many calls to the solver: e.g.

Uncertainty quantification
PDE-constrained optimization
Inverse problems

Single solve expensive for large-scale applications — multiple solves O(10%)
prohibitively expensive!

v

» Need to design efficient, robust surrogates.

» Recent interest in deep learning-based surrogates — focus of this talk!
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v

Operator learning using networks

v

Variationally Mimetic Operator Network (VarMiON)

» Error estimates

Numerical results

v

» Conclusion

D. Ray VarMiON 2



Solving PDEs using DL

Consider the generic PDE:
Llu(x)) = f(z), VYzeQ
» Solution approximated by a network u(x; vp) with parameters .

» Minimize PDE residual at collocation points (Lagaris et al., 2000): Solve
1 N
* : S~ A2
v’ =argminll(y), 1) = ; (@i 9) = f(a)|

» Rediscovered as Physics Informed Neural Nets (PINNs) with deeper
structures (Raissi et al., 2019).

» However, solve one instance of the PDE — needs to be retrained if f changes.
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Solving PDEs using DL

We are interested in approximating the solution operator

S: F—YV
f=ulsf)

» Sample input functions at sensor nodes and generate solution at any « (Chen
& Chen, 1995).

» Extended using deep networks as DeepONets (Lu et al., 2021).
» Sub-nets for learned basis functions (trunk), & coefficients (branch).
» Supervised learning algorithm.

Gomee
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Solving PDEs using DL

We are interested in approximating the solution operator

S: F—YV
f=ulsf)

» Neural operators — an alternate strategy to approximate S
» Extension of NNs to functions.

» Philosophy — “formulate the algorithm in the infinite dimensional setting and
then discretize".

» Several variants: FNO (Li et al.,, 2020), Graph Kernel Net (Li et al., 2020), PCA-NET
(Bhattacharya et al., 2021), ...

This talk: Operator Networks that mimic (approximate) variational form™ of the
PDE.

* Variationally Mimetic Operator Networks; Patel, R, Abdelmalik, Hughes, Oberai; 2022
(arXiv:2209.12871)
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Problem Statement

» Consider a generic linear elliptic PDE:

L(u(z);0(x)) = f(x), VxeQ,
B(u(x);0(x)) = n(x), Vaxely,
u(x) =0, Ve ely,

where f € F C L*(Q),n e N C L*(T},), 0 € T C L™=(Q).

» The variational formulation: find u € V C H, such thatV w € V,

a(w,u;0) = (w, f) + (w,n)r, .

» The solution operator is

S:X=FxTxN-—VCH,
(f,0,m) = u(; f,0,m)

This mapping can be non-linear in 6.
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Discrete weak formulation

» Evaluate approximate solution in finite-dimensional space
Vi = span{¢;(x) : 1 <i < q}.

» Discrete weak formulation: find «” € V" such that ¥ w" € V",

a(w",u";0") = (", ") + (w,n")r,,.

» Any function v" € V" can be written as
vh(m) = VT@(w)v V= (Ula e 7U¢1)T7 ‘P(E) = ((]31(:2), o 7¢q(m))T‘

Plugging this into discrete weak form gives...
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Discrete weak form

» Linear system of equations,
K(0"U = MF + MN

where the matrices are given by

Kij(0") = a(¢i, ¢550"), My = (¢i,¢5), Mij = (di,¢5)r, 1<i,j<q.

» Discrete solution operator is
St = Frx Thx NP — VP
(fh,ﬁh,nh) — uh(.;fh,eh,nh) — B(fh,nh,ﬁh)—ré
where

B(f",0".7") =U = K~'(0")(MF + MN).

VarMiON will mimic this structure!
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VarMiON

Evaluate (f, 6, n) at some fixed sensor nodes to get the discrete sample vectors

F=(f@), . f@), ©=0), .0@) , N=ua), - @

—
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VarMiON

The network is comprises several sub-networks with latent dimension p:

Nonlinear branch pXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

Nonlinear trunk
()

a = £ =~
X X X X
[ — [ o
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?

non-linear CNN that outputs a matrix
Nonlinear branch PXp

D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

a2 = £l
X X X
- - —

dx1
Nonlinear trunk
()

T
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?
» Two linear branches with learnable matrices A, A

Nonlinear branch PXp
D(®)

MatVecProd

Linear branch px1
AF

o >
X X
- -

k' x1
Linear branch px1

@—’ iN

dx1 linear (learnable) transformations
Nonlinear trunk px1

@_’ ()
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?
» Two linear branches with learnable matrices A, A

» Non-linear trunk (basis of VarMiON): z +— 7(x) = (11(x), - - - ()

Nonlinear branch

T

D(®)

Linear branch
AF

Linear branch

AN

a2 = £l
X X X
- - —

dx1
Nonlinear trunk

MatVecProd

T

()
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VarMiON

VarMiON operator is
S:R* x R* x R¥ — V"™ = span{ri(z): 1 <i < p}
(F,0,N)~u(;F,0,N)=6(/"1"6""r

where o R o
B(F,©,H) = D(®)(AF + AN).

Nonlinear branch pXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

Nonlinear trunk
()

a = £ =
X X X X
[ — [ o
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VarMiON

VarMiON operator is

S:RF x RF x R¥ — V" =span{ri(x) : 1 <i<p}
(F,©,N)— a(;F,0,N) =8(f"n",6") "'

where o - — »
B(F,0,H)=D(O©)(AF + AN).
Compare this to the discrete solution operator:
ST F X T N — V! ¥

(f", 0" ") s G 10" 0™ < B 0" 0M) T @

where ~
B(f",0",n") = K '(6")(MF + MN).
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VarMiON

In comparison with the variational formulation
» Can prove D is the reduced order counterpart of K~ (p < q)
» While the basis ® are fixed, = are learned from training data.

In comparison with a vanilla DeepONet
» DeepONet typically has a single nonlinear branch for inputs.
» VarMiON explicitly constructs matrix operators. DeepONet does not.
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Training the VarMiON

For 1 < j < J, consider distinct samples (f;,0;,n;) € X.

Obtain the discrete approximations (f;',07, 7)) € X"

Find the discrete numerical solution u” = S"(fI, 0%, o).

Choose output nodes {z;}/~, to sample the numerical solution v/, = u” (z;).
Generate the input vectors (F;, ©,, N;).

Collect input & output to form training set with J x L samples

I

S:{(ﬁjaéjvl/\]\-ﬁmlvu?l):1§j§‘]7 1SZSL}7

Find the network weights that minimize the loss function

J L
DRSO IUES SRR AL
j=1 =1

where %) are all the trainable parameters of the VarMiON.
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Error Estimates

The generalization error for any (f,0,n) € X
E(f,0,m) = |S(f,6.n) — S(F,©,N)].
Split into four errors:

g(faevn) < H‘S‘(f70777)7 (fj7 Jaﬁ])
IS (f5,05,m5) — S"(fr, 0% 0! )H —— Numerical error in generating data
+||Sh(fj ,(9] 77]]) g(l?’ (:j )|| —> Training error of VarMiON

| — Stability of S

)H — Stability of VarMiON &
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Error Estimates

Generalization error estimate (Patel et al., 2022)
If X := F x T x N is compact, the non-linear branch is Lipschitz, i.e.,

|D(®) — D(®)|2 < Lp||© — &2

Then, the generalization error can be bounded as

1 1 1
Erbm=¢ (eh Tet Vet ont ment Lm)

where

e, — numerical error in training data
€s — covering estimate
€, — training error

a, o,y — quadrature convergence rates

The constant C depends on the stability constants of S and S.
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Numerical Example

l-‘71
Steady-state heat conduction
~V - (0(x)Vu(z)) = f(x), VzeQ I, o T,
0(x)Vu(z) - n(x) =n(x), Vael,
u(x) =0, Vel
T

v

vVvyVvyyvyy

n

Input: thermal conductivity 6, heat sources f, and heat flux n. Output:
temperature w.

Inputs: Gaussian Random Fields.

Networks with two inputs (6, f) and three inputs (9, f, n).

Compare VarMiON (p = 100) and vanilla DeepONet.

Similar number of network parameters. Identical trunk architecture.

Robustness: sampling (spatially uniform or random) and trunk functions
(ReLU or RBF).
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Numerical Example: Two Inputs

» 10,000 samples generated using Fenics.
» 9,000 for training/validation and 1,000 for testing.
» Average value of relative L, error reported below.

Case Model Number of parameters  Relative L. error
Randomly sampled input  DeepONet 111,248 3.22 %
with ReLU Trunk VarMiON 109,077 2.61 %
Uniformly sampled input  DeepONet 49,928 817 %
with ReLU Trunk VarMiON 46,345 2.53 %
Uniformly sampled input  DeepONet 17,911 3.83 %
with RBF Trunk VarMiON 17,409 2.28 %
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Numerical Example: Two inputs

Density of scaled L, error (ReLU trunk and uniform spatial sampling).

0.6 DeepONet
= VarMiON
0.5
0.4
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error (in %)
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Numerical Example: Two input

Predictions by VarMiON and DeepONet.

f ‘] u (true) u (VarMiON) error u (DeepONet) error
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Numerical Example: Three Inputs

» Input functions f, 6 and .

» 15,625 samples generated using Fenics.

» 14,625 for training/validation and 1,000 for testing.
» Average value of relative L, error reported below.

Case Model Number of parameters  Relative L, error
Uniformly sampled input  DeepONet 28,090 31.41 %
with RBF Trunk VarMiON 31,849 4.02 %
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Numerical Example: Three inputs

Density of scaled L, error (RBF trunk and uniform spatial sampling).

0.5 DeepOMet
B varMioN
0.4
0.3
0.2
0.1
_— e
0

Density

0 20 40 60 80

error (in %)
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Numerical Example: Three inputs

Predictions by VarMiON and DeepONet.

f 2] n u (true) u (VarMiON) error u (DeepONet) error

5.83 % 71.08 %
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— bottom
bottom

top
bottom
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14 — wp
14 — bottom
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Concluding remarks

» VarMiON: an operator network that mimics variational formulation.

» Takes the form of a reduced order model.

» Precise specification of the branch network — depends on weak form of PDE.
» Error analysis reveals important components.

» Numerical results point to better and more robust performance.

» Several extensions: nonlinear operators, physics-informed residuals,
time-dependent problems, hyperbolic systems, and specification of geometry.
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