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Hyperbolic conservation laws and entropy

Consider the PDE (in 1D for simplicity)

Ou(z,t) n Of (u(z,t)) _ 0 » Shallow water equations

ot ox » Euler equations

u(z,0) = uo(x) » MHD equations

Entropy conditions — to select a physically relevant weak solution
Assume PDE is equipped with entropy-entropy flux pair (n(u), g(u)).

A weak entropy solution should satisfy

<
ot ox <0

Existence, uniqueness of solutions for scalar conservation laws [Kruzkov, 1970].
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Finite difference schemes

i-3/2 i-|1/2 i+1/2 i+3/2 i+5/2
] l |

----{ -------- I . I N I I r----"""" | -----

i-1 i i+1 i+t2

Consider the one-dimensional setting (d = 1). Discretize (uniformly) the domain
Q =, Is, where

h h
Li=lo,_a,ma]=lwi— 5%t 5]
Consider the semi-discrete finite difference scheme

d1gt(t) n % (f,,;+% *fvi—%>

where:

u,; — approximation of w(z;,t)
fiv1— consistent, conservative numerical flux at Tyl

Interested in schemes satisfying a discrete entropy condition.
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

satisfying the discrete entropy condition
dn(ul) 1
et (e may) <0

where Qi1 is a consistent numerical entropy flux.
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

_opr2p 1
f¢+% = fi+% N §Bi+%[[z]]"+%

— ]

high-order entropy

. diffusion operator
conservative flux

jump in the
reconstructed
entropy variables

= O
satisfying the discrete entropy condition B ()

T 1y —ay) <0

where Qi1 is a consistent numerical entropy flux.
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

g2 L
f¢+% = flJr% - §Bi+%ﬂzﬂi+%

i i-3 i-1 i+
At each Tipr

» Use cell values of z to reconstruct (component-wise) polynomials
zi(x), zi+1(x) in the cells I;, I;+1 respectively.
» Evaluate the interface values and jump at Tipa

t

zoa = zil@ny), 2 = Ealeny), [EHay =200 -2

» In smooth regions
[=]; 1 ~ O(RY)
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

Most importantly, the reconstruction needs to satisfy the sign property.

Sign property [Fjordholm et al., 2012]

A reconstruction algorithm used is said to satisfy the sign property if the following

condition holds (component-wise) at Tiy1
sign([[z]]i+1) = Sign(AzH_;)

where AZZJr% = Zi+1 — Zi. B .
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Reconstructions satisfying the sign property

Only a handful reconstructions are known to have this property!
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Reconstructions satisfying the sign property

Only a handful reconstructions are known to have this property!

For ex:
» ENO interpolation [Fjordholm et al., 2013]
To construct a polynomial z;(x) in cell I;, consider k stencils (each with &
cells) and pick the stencil where the polynomial would be the smoothest, i.e.,
away from discontinuities.

1
/p()_\
% % % : % %
I; I
T3 T3 Ty TPomn ULz Tits
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Reconstructions satisfying the sign property

Only a handful reconstructions are known to have this property!

For ex:

» ENO interpolation [Fjordholm et al., 2013]
To construct a polynomial z;(x) in cell I;, consider k stencils (each with &
cells) and pick the stencil where the polynomial would be the smoothest, i.e.,
away from discontinuities.

Disadvantages:

B Consider 2k — 1 cells but finally only use & cells.
B Accuracy issues due to linear instabilities [Rogerson and Meiburg, 1990].
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Reconstructions satisfying the sign property

Only a handful reconstructions are known to have this property!

For ex:

» ENO interpolation [Fjordholm et al., 2013]
To construct a polynomial z;(x) in cell I;, consider k stencils (each with &
cells) and pick the stencil where the polynomial would be the smoothest, i.e.,
away from discontinuities.

Disadvantages:

B Consider 2k — 1 cells but finally only use & cells.
B Accuracy issues due to linear instabilities [Rogerson and Meiburg, 1990].

» Third-order weighted ENO (WENO) interpolation
SP-WENO [Fjordholm and R., 2016], SP-WENOc [R., 2018].

B Weighted combination of linear polynomials
W 3rd order accuracy in smooth regions.

B Adapt near discontinuities

B The sign property is satisfied.
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Third-order SP-WENO

-3 i1 i+12  i+3n i+5n
| | o | o | o |
o % 1"
i-1 P "® i+2

Reconstruction from the left: Using candidate stencils {z;, z;+1} and {z;—1, z:}

_ 0 1
ZH_% = ’w[)Zi( )(:ChL%) + w12£ )(szr%)
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Third-order SP-WENO

-3 i1 i+12  i+3n i+5n
| | o | o | o |
o % 1"
i-1 P "® i+2

Reconstruction from the left: Using candidate stencils {z;, z;+1} and {z;—1, z:}

(1)

- 0
7yl :wozi( )(:CH%)—Fw]zi (a;H%)

Reconstruction from the right: Using candidate stencils {x;, z;+1} and
{@it1, g2}
~ 0 ~ 1
Z:r% = w021(+)1 (xu-%) + /wlzz€+)1 (3314-%)
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Third-order SP-WENO

-3 i1 i+12  i+3n i+5n
| | o | o | o |
o % 1"
i-1 P "® i+2

Need to pick weights wy, w1, wo, w1 such that:
» Consistency:

wo+wi1 =1, wo+wi =1, wo,wi,Wwo,w; > 0.

» Satisfy the sign property, which can be expressed in terms of an explicit
inequality constraint

C(w1,Wo, zi—1, Zi, Zit1, Zit2) > 0
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Third-order SP-WENO: Issues

Two variants of SP-WENO were hand-crafted [Fjordholm and R., 2016; R., 2018]
satisfying:

» All the above properties

» Third-order accuracy for smooth solutions

However when used with TeCNO schemes, lead to spurious Gibbs oscillations
near discontinuities.

Reason: Reconstructions can result in a jump [[z]H% ~ 0. Thus

reduces to .f *,2p

i+l (central flux)

*,2 1
fi+%p - §Bi+% [[z]]i-&-%

i.e., no dissipation!
This is okay in smooth regions, but not near discontinuities.
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Strategy: Use a deep neural network to predict the WENO weights such that
» All important properties are strongly imposed.

» Learn from data how to correctly reconstruct near smooth regions and
discontinuities.

» Achieve this a model agnostic manner.

Learning WENO for entropy stable schemes to solve conservation laws
Charles, R
arXiv: 2403 14848
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DSP-WENO

Key ingredients:
» Enough to determine w and w1
» Feasible region R € [0, 1]%: if (o, w1) € R then
B Sign property holds, i.e.,

C(wi, o, 2i—1, %, Zi41, 2i42) 2 0
B Third-order accuracy in smooth regions. vl

» Partition into 6 cases

» In each case, R is a convex polygon with 5 V8
vertices {+7}°_, in [0, 1].
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DSP-WENO

Key ingredients: )

» Enough to determine w and w1
» Feasible region R € [0, 1]%: if (o, w1) € R then
W Sign property holds, i.e.,

C(wi, o, 2i—1, %, Zi41, 2i42) 2 0
B Third-order accuracy in smooth regions. vl

» Partition into 6 cases

» In each case, R is a convex polygon with 5 V8
vertices {+7}°_, in [0, 1].

Goal: Design a neural network that estimates the convex weights {a}>_, for the
vertices such that ; s
1Do=2ajl/{ wlzz:ajl/g
j=1 j=1

leads to accurate WENO reconstructions for both smooth and discontinuous
functions.
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DSP-WENO

4 cell center WENO
values weights
[{21 1721:21+1’21+2}]—>{ NETWORK }—> {0‘]}]— *’{ Wo, W1 H
Reconstructed
values
{Vj}j:1
Vertices

Network trained by minimizing the (left and right) interface mismatch error

+ +
%41 —z(xH_%)

averaged over all training samples.
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DSP-WENO

Network architecture: Feedforward network with 3 hidden layers of width 5 each.

Training dataset: Samples generated using the following functions

No. Type z(x) Parameters
1 Smooth ax® +bx® +cx+d a,b,c,d € U[—10,10]
2 Smooth (z—a)(z=b)(x—c)+d | a,bec,deU-2,2|
3 Smooth sin (arz + b) a,b € U[-2,2]
4 | Discontinuous ax +b !f ©<05 a,b,c,d € U[-5, 5]
cx+difz>05

50,000 smooth samples and 50,000 discontinuous samples created.

No solutions to conservation laws used!
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Numerical results

» TeCNO scheme with fourth-order entropy conservative flux f:f;-
2

» Third-order SSP-RKS [Gottlieb et al, 2001] to integrate semi-discrete scheme.

» Reconstruction in viscous term:
B Second-order ENO-2 (4 cells per a:iJr%)

W Third-order ENO-3 (6 cells per wi+%)
B Third-order SP-WENO (4 cells per zH%)
B Third-order SP-WENOc (4 cells per xi+%)

B New third-order DSP-WENO (4 cells per zi+%)
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Linear advection: Smooth data

Solving d;u + d,u = 0 on [—=, 7] till T = 0.5 with periodic BC and
Test 1: up = sin(z)
Test 2: uy = sin*(x)

N ENO3 SP-WENO SP-WENOc DSP-WENO
L} L} L L}

Error Rate Error Rate Error Rate Error Rate

100 | 3.23e-5 - 6.90e-5 - 6.80e-5 - 1.66e-4 -
- 200 4.04e-6 3.00 | 7.65e-6 3.17 | 7.48¢e-6 3.18 | 3.58e-5 2.21
’g 400 5.05e-7 3.00 | 8.29¢-7 3.20 | 8.17e-7 3.20 | 457e-6 2.97
[ 600 1.50e-7 3.00 | 2.26e-7 3.20 | 2.23e-7 3.20 1.35e-6 3.02
800 6.31e-8 3.00 | 8.72¢e-8 3.31 8.60e-8 3.31 5.72e-7 2.97
1000 | 3.23e-8 3.00 | 4.21e-8 3.27 | 4.15e-8 3.26 | 2.95e-7 2.97

100 | 1.48e-3 - 1.52e-3 - 1.46e-3 - 1.87e-3 -
o~ 200 1.98e-4 291 1.68e-4 3.18 1.68e-4 3.12 | 2.61e-3 2.84
"g 400 2.58e-5 2.94 1.79e-5 3.23 1.78e-5 3.23 | 3.35e-5 2.96
~ | 600 | 8.25e-6 281 | 4696 3.31 | 4.70e-6 3.29 | 9.59e-6 3.08
800 | 4.64e-6 2.00 | 1.81e-6 3.31 | 1.80e-6 3.33 | 3.93e-6 3.10
1000 | 3.46e-6 1.31 8.64e-7 3.32 | 8.61e-7 3.31 2.03e-6 2.96

Note:

» Deterioration of accuracy with ENO3 in Test 2
» SP-WENO and SP-WENOc have accuracy > 3 — jump vanishing
» DSP-WENO more dissipative but third-order
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Linear advection: Shape

Solved on [0, 1.4] till ' = 1.4 with periodic BC

—— Exact Soln  —6— ENO2 —=- ENO3  —<— SP-WENO SP-WENOc  — DSP-WENO

4 05 06 07 08 09 10
X

Under/overshoots with SP-WENO and SP-WENOc
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Euler equations: 1D (modified) shock tube

Solved on [0, 1] till 7" = 0.2 with Neumann BC. N = 400

1.0 — Ref. Soln 0.65
—&— ENO3 : :;g"'”
— SP-WENO 0.601 A — SP-WENO
08 SP-WENOCc SP-WENOc
—— DSP-WENO 0.551 —9— DSP-WENO
‘a, >
Zos A 20.50]
c
g $0.45]
0.4
0.40/ “
02 0.35]
— 03
00 02 04 06 08 10 050 055 0.60 0.65 070 0.75 0.80
X X
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Euler equations: 1D Lax shock tube

Solved on [—5, 5] till T = 1.3 with Neumann BC. N = 200

e —— Ref. Soln 18 —— Ref. Soln
1.6 —=- ENO3 —&— ENO3
—%— SP-WENO 1.7 -~ sp-weno
1.4 SP-WENOc SP-WENOC
**] —— DsP-wENO 16 —5— DSP-WENO
>1.2 > ’
210 215
3 3
0.8 1.4
0.6
13 =
7
12
—4 ) 0 2 4 .75 2.25 2.75 3.25 3.75
X X
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Euler equations: 2D Riemann problem (conf.

Solved on [0, 1] x [0, 1] till T'= 0.25 with Neumann BC using 400 x 400 cells

2.102 2102

-1.707 -1.707

o
™ 1312 = 1312
2 s
z 1
w o
09170 @ 09170
0.5220 0.5220
Max: 1.731 Max: 2.102
Min: 0.5259 Min: 0.5220
2.102 2.102
1.707 1.707
o o
o 1.312 = 1.312
E w
£ =
d &
0.9170 0.9170
(2] a
0.5220 0.5220
Max: 1.881 Max: 1.756
Min: 0.5220 Min: 0.5259
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Euler equations: 2D Riemann problem (conf. 12)

Solution along x = 0.89 and z = 0.5
Reference solution using ENO3 on 1200 x 1200 mesh.

---- Reference —- ENO3  —¢ SP-WENO SP-WENOc  —+ DSP-WENO

15

0.5 0.6 0.7 0.8 0.9 %.3 0.4 0.5 0.6 0.7 0.8
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Conclusion

» Demonstrated a data-driven approach to learn reconstruction algorithms.
» Trained a network to learn WENO weights.
» Strong embedding of structural properties, such as the sign property.

» Network agnostic of any specific conservation model — single network for all
models.

» Performs better than existing SP-WENO variants.

» Next steps: higher-order DSP-WENO, reconstruction on unstructured grids,
hybrid schemes.
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Conclusion

» Demonstrated a data-driven approach to learn reconstruction algorithms.
» Trained a network to learn WENO weights.
» Strong embedding of structural properties, such as the sign property.

» Network agnostic of any specific conservation model — single network for all
models.

» Performs better than existing SP-WENO variants.

» Next steps: higher-order DSP-WENO, reconstruction on unstructured grids,
hybrid schemes.

Questions?
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Third-order SP-WENO

-3 i1 i+12  i+3n i+5n
| | o | o | o |
— % 1"
i-1 P "® i+2

Need to pick weights wy, w1, wo, w1 such that:
» Consistency:

wo+wi1 =1, wo+wi =1, wo,wi,Wwo,w; > 0.

» Satisfy the sign property, which can be expressed in terms of an explicit
constraint

wo(1—07) +wi(1—07)>0

where the jump ratios are
+3  Zite — Zit1 o+ — Zit2 — Zit1

1
0~ = 2
)
Azi+% Zi+1 — % AZZ+% Zi41 — %
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Burgers equation: isolated shock wave

Solving d;u + d,u?/2 = 0 on [—1, 1] till T = 0.5 with Neumann BC. N = 100

—— Exact Soln —&— ENO2 —=— ENO3 —— SP-WENO SP-WENOCc —7— DSP-WENO
3.4
3 33
, 3.2
31
S o1 > <
3.0}
0 2.9
2.8
-1
2
-1.0 205 00 05 10 30 0.40 0.50
X X

Under/overshoots with all methods! But better profile with DSP-WENO prior to the
shock.
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Euler equations

The full 3D model:

5 [r
% pu| + V-
E

pu
pI+pu®@u)| =0,
(E +p)u

2
E:p(%—l—e).

with the internal energy e given by EOS

Total energy

o p
(y="Dp

where v = 1.4 is the ratio of specific heats.
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Euler equations: 1D shock-entropy test

Solved on [—5, 5] till T = 1.8 with Neumann BC. N = 400

> = o 5.00{ — ret son
—— SP-WENO =
4 ; SP-WENOC 4.75 zzﬁéxgc
1 —— DsP-wENO 4.501 = peraweno
ey >4.25
2 3 )
[} S 4.00
© ©3.75]
5 .
3.50
1 m 3.25
. . . . . 3.0
—4 -2 0 2 4 %.0 0.5 1.0 1.5 2.0 2.5
X X
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