Deep learning-based high-order entropy stable schemes for conservation laws

Deep Ray Department of Mathematics University of Maryland, College Park

Email: deepray@umd.edu Website: deepray.github.io

Joint work with Philip Charles

ECCOMAS Lisboa, June 3-7, 2024

Hyperbolic conservation laws and entropy

Consider the PDE (in 1D for simplicity)

$$\frac{\partial \boldsymbol{u}(x,t)}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{u}(x,t))}{\partial x} = 0$$
$$\boldsymbol{u}(x,0) = \boldsymbol{u}_0(x)$$

- Shallow water equations
- ▶ Euler equations
- MHD equations

Entropy conditions → to select a physically relevant weak solution

Assume PDE is equipped with **entropy-entropy flux** pair $(\eta(u), q(u))$.

A weak entropy solution should satisfy

$$\frac{\partial \eta(\boldsymbol{u})}{\partial t} + \frac{\partial \boldsymbol{q}(\boldsymbol{u})}{\partial x} \le 0$$

Existence, uniqueness of solutions for scalar conservation laws [Kruzkov, 1970].

Finite difference schemes

Consider the one-dimensional setting (d=1). Discretize (uniformly) the domain $\Omega = \bigcup_i I_i$, where

$$I_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}] = [x_i - \frac{h}{2}, x_i + \frac{h}{2}]$$

Consider the semi-discrete finite difference scheme

$$\frac{\mathsf{d}\boldsymbol{u}_{i}(t)}{\mathsf{d}t} + \frac{1}{h}\left(\boldsymbol{f}_{i+\frac{1}{2}} - \boldsymbol{f}_{i-\frac{1}{2}}\right)$$

where:

 $u_i \rightarrow \text{approximation of } u(x_i, t)$

 $\mathbf{f}_{i+\frac{1}{2}} \to \text{consistent},$ conservative numerical flux at $x_{i+\frac{1}{2}}$

Interested in schemes satisfying a discrete entropy condition.

TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012] with the flux

$$m{f}_{i+rac{1}{2}} = m{f}_{i+rac{1}{2}}^{*,2p} - rac{1}{2}m{B}_{i+rac{1}{2}}[\![m{z}]\!]_{i+rac{1}{2}}$$

satisfying the discrete entropy condition

$$\frac{\mathrm{d}\eta(\boldsymbol{u}_i)}{\mathrm{d}t} + \frac{1}{h}\left(q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}\right) \leq 0$$

where $q_{i+\frac{1}{2}}$ is a consistent numerical entropy flux.

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012] with the flux

satisfying the discrete entropy condition

$$\frac{\mathrm{d}\eta(\boldsymbol{u}_i)}{\mathrm{d}t} + \frac{1}{h}\left(q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}\right) \leq 0$$

where $q_{i+\frac{1}{2}}$ is a consistent numerical entropy flux.

 $z = \partial_{u} \eta(u)$

TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012] with the flux

$$m{f}_{i+rac{1}{2}} = m{f}_{i+rac{1}{2}}^{*,2p} - rac{1}{2} m{B}_{i+rac{1}{2}} [\![m{z}]\!]_{i+rac{1}{2}}$$

At each $x_{i+\frac{1}{2}}$:

- ▶ Use cell values of z to reconstruct (component-wise) polynomials $z_i(x)$, $z_{i+1}(x)$ in the cells I_i , I_{i+1} respectively.
- $\blacktriangleright \ \ \text{Evaluate the interface values and jump at } x_{i+\frac{1}{2}} \text{:}$

$$\boldsymbol{z}_{i+\frac{1}{2}}^{-} = \boldsymbol{z}_{i}(x_{i+\frac{1}{2}}), \qquad \boldsymbol{z}_{i+\frac{1}{2}}^{+} = \boldsymbol{z}_{i+1}(x_{i+\frac{1}{2}}), \qquad [\![\boldsymbol{z}]\!]_{i+\frac{1}{2}} = \boldsymbol{z}_{i+\frac{1}{2}}^{+} - \boldsymbol{z}_{i+\frac{1}{2}}^{-}$$

▶ In smooth regions

$$[\![\boldsymbol{z}]\!]_{i+\frac{1}{2}} \sim \mathcal{O}(\boldsymbol{h}^k)$$

TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012] with the flux

$$f_{i+\frac{1}{2}} = f_{i+\frac{1}{2}}^{*,2p} - \frac{1}{2}B_{i+\frac{1}{2}}[z]_{i+\frac{1}{2}}$$

Most importantly, the reconstruction needs to satisfy the sign property.

Sign property [Fjordholm et al., 2012]

A reconstruction algorithm used is said to satisfy the sign property if the following condition holds (component-wise) at $x_{i+\frac{1}{2}}$

$$\text{where } \Delta z_{i+\frac{1}{2}}=z_{i+1}-z_i. \\ \\ \frac{\mathrm{sign}([\![z]\!]_{i+\frac{1}{2}})=\mathrm{sign}(\Delta z_{i+\frac{1}{2}})}{\mathrm{sign}(z_{i+\frac{1}{2}})} \\ \\ = \frac{\mathrm{sign}(z_{i+\frac{1}{2}})}{\mathrm{sign}(z_{i+\frac{1}{2}})} \\ \\ = \frac{\mathrm{sign}($$

Only a handful reconstructions are known to have this property!

D. Ray

DSP-WENO

Only a handful reconstructions are known to have this property!

For ex:

► ENO interpolation [Fjordholm et al., 2013]

To construct a polynomial $z_i(x)$ in cell I_i , consider k stencils (each with k cells) and pick the stencil where the polynomial would be the smoothest, i.e., away from discontinuities.

Only a handful reconstructions are known to have this property!

For ex:

► ENO interpolation [Fjordholm et al., 2013]

To construct a polynomial $z_i(x)$ in cell I_i , consider k stencils (each with k cells) and pick the stencil where the polynomial would be the smoothest, i.e., away from discontinuities.

Disadvantages:

- Consider 2k 1 cells but finally only use k cells.
- Accuracy issues due to linear instabilities [Rogerson and Meiburg, 1990].

Only a handful reconstructions are known to have this property!

For ex:

► ENO interpolation [Fjordholm et al., 2013]

To construct a polynomial $z_i(x)$ in cell I_i , consider k stencils (each with k cells) and pick the stencil where the polynomial would be the smoothest, i.e., away from discontinuities.

Disadvantages:

- Consider 2k 1 cells but finally only use k cells.
- Accuracy issues due to linear instabilities [Rogerson and Meiburg, 1990].
- ► Third-order weighted ENO (WENO) interpolation SP-WENO [Fjordholm and R., 2016], SP-WENOc [R., 2018].
 - Weighted combination of linear polynomials
 - 3rd order accuracy in smooth regions.
 - Adapt near discontinuities
 - The sign property is satisfied.

Reconstruction from the left: Using candidate stencils $\{x_i, x_{i+1}\}$ and $\{x_{i-1}, x_i\}$

$$z_{i+\frac{1}{2}}^{-} = w_0 z_i^{(0)}(x_{i+\frac{1}{2}}) + w_1 z_i^{(1)}(x_{i+\frac{1}{2}})$$

Reconstruction from the left: Using candidate stencils $\{x_i, x_{i+1}\}$ and $\{x_{i-1}, x_i\}$

$$z_{i+\frac{1}{2}}^{-} = w_0 z_i^{(0)}(x_{i+\frac{1}{2}}) + w_1 z_i^{(1)}(x_{i+\frac{1}{2}})$$

Reconstruction from the right: Using candidate stencils $\{x_i, x_{i+1}\}$ and $\{x_{i+1}, x_{i+2}\}$

$$z_{i+\frac{1}{2}}^+ = \underline{\tilde{\mathbf{w}}_0} z_{i+1}^{(0)}(x_{i+\frac{1}{2}}) + \underline{\tilde{\mathbf{w}}_1} z_{i+1}^{(1)}(x_{i+\frac{1}{2}})$$

Need to pick weights $w_0, w_1, \tilde{w}_0, \tilde{w}_1$ such that:

▶ Consistency:

$$w_0 + w_1 = 1$$
, $\tilde{w}_0 + \tilde{w}_1 = 1$, $w_0, w_1, \tilde{w}_0, \tilde{w}_1 \ge 0$.

 Satisfy the sign property, which can be expressed in terms of an explicit inequality constraint

$$C(w_1, \tilde{w}_0, z_{i-1}, z_i, z_{i+1}, z_{i+2}) \ge 0$$

D. Ray

Third-order SP-WENO: Issues

Two variants of SP-WENO were hand-crafted [Fjordholm and R., 2016; R., 2018] satisfying:

- All the above properties
- ► Third-order accuracy for smooth solutions

However when used with TeCNO schemes, lead to spurious Gibbs oscillations near discontinuities.

Reason: Reconstructions can result in a jump $[z]_{i+\frac{1}{2}} \approx 0$. Thus

$$\boldsymbol{f}_{i+\frac{1}{2}}^{*,2p} - \frac{1}{2}\boldsymbol{B}_{i+\frac{1}{2}}[\![\boldsymbol{z}]\!]_{i+\frac{1}{2}} \xrightarrow{\text{reduces to}} \boldsymbol{f}_{i+\frac{1}{2}}^{*,2p} \quad \text{(central flux)}$$

i.e., no dissipation!

This is okay in smooth regions, but not near discontinuities.

Strategy: Use a deep neural network to predict the WENO weights such that

- ► All important properties are strongly imposed.
- Learn from data how to correctly reconstruct near smooth regions and discontinuities.
- ► Achieve this a model agnostic manner.

Learning WENO for entropy stable schemes to solve conservation laws
Charles, R
arXiv:2403.14848

DSP-WENO

Key ingredients:

- ightharpoonup Enough to determine \tilde{w}_0 and w_1
- ▶ Feasible region $\mathcal{R} \in [0,1]^2$: if $(\tilde{w}_0, w_1) \in \mathcal{R}$ then
 - Sign property holds, i.e., $C(w_1, \tilde{w}_0, z_{i-1}, z_i, z_{i+1}, z_{i+2}) \geq 0$
 - Third-order accuracy in smooth regions.
- Partition into 6 cases
- In each case, \mathcal{R} is a convex polygon with 5 vertices $\{\nu^j\}_{j=1}^5$ in $[0,1]^2$.

DSP-WENO

Key ingredients:

- ▶ Enough to determine \tilde{w}_0 and w_1
- ▶ Feasible region $\mathcal{R} \in [0,1]^2$: if $(\tilde{w}_0, w_1) \in \mathcal{R}$ then
 - Sign property holds, i.e., $C(w_1, \tilde{w}_0, z_{i-1}, z_i, z_{i+1}, z_{i+2}) \geq 0$
 - Third-order accuracy in smooth regions.
- Partition into 6 cases
- In each case, \mathcal{R} is a convex polygon with 5 vertices $\{\nu^j\}_{j=1}^5$ in $[0,1]^2$.

Goal: Design a neural network that estimates the convex weights $\{\alpha^j\}_{j=1}^5$ for the vertices such that

$$\tilde{w}_0 = \sum_{j=1}^5 \alpha^j \nu_1^j \quad w_1 = \sum_{j=1}^5 \alpha^j \nu_2^j$$

leads to accurate WENO reconstructions for both smooth and discontinuous functions.

Network trained by minimizing the (left and right) interface mismatch error

$$\left|z_{i+\frac{1}{2}}^{-} - z(x_{i+\frac{1}{2}}^{-})\right| + \left|z_{i+\frac{1}{2}}^{+} - z(x_{i+\frac{1}{2}}^{+})\right|$$

averaged over all training samples.

D. Ray

DSP-WENO

Network architecture: Feedforward network with 3 hidden layers of width 5 each.

Training dataset: Samples generated using the following functions

No.	Type	z(x)	Parameters
1	Smooth	$ax^3 + bx^2 + cx + d$	$a, b, c, d \in \mathbb{U}[-10, 10]$
2	Smooth	(x-a)(x-b)(x-c)+d	$a, b, c, d \in \mathbb{U}[-2, 2]$
3	Smooth	$\sin\left(a\pi x+b\right)$	$a,b \in \mathbb{U}[-2,2]$
4	Discontinuous	$\begin{cases} ax + b \text{ if } x \le 0.5\\ cx + d \text{ if } x > 0.5 \end{cases}$	$a,b,c,d\in\mathbb{U}[-5,5]$

50,000 smooth samples and 50,000 discontinuous samples created.

No solutions to conservation laws used!

Numerical results

- lacktriangle TeCNO scheme with fourth-order entropy conservative flux $oldsymbol{f}_{i+rac{1}{2}}^{*,4}$.
- ▶ Third-order SSP-RK3 [Gottlieb et al, 2001] to integrate semi-discrete scheme.
- ▶ Reconstruction in viscous term:
 - \blacksquare Second-order ENO-2 (4 cells per $x_{i+\frac{1}{2}}$)
 - Third-order ENO-3 (6 cells per $x_{i+\frac{1}{2}}$)
 - Third-order SP-WENO (4 cells per $x_{i+\frac{1}{2}}$)
 - Third-order SP-WENOc (4 cells per $x_{i+\frac{1}{2}}$)
 - $\blacksquare \ \, \text{New third-order DSP-WENO} \ \, (\text{4 cells per } x_{i+\frac{1}{2}})$

Linear advection: Smooth data

Solving $\partial_t u + \partial_x u = 0$ on $[-\pi, \pi]$ till T = 0.5 with periodic BC and

Test 1: $u_0 = \sin(x)$ Test 2: $u_0 = \sin^4(x)$

	N	ENO3		SP-WENO		SP-WENOc		DSP-WENO	
		$_{L}^{1}_{h}$		$_{L}^{1}_{h}$		$_{L}^{1}_{h}$		L_h^1	
		Error	Rate	Error	Rate	Error	Rate	Error	Rate
Test 1	100	3.23e-5	-	6.90e-5	-	6.80e-5	-	1.66e-4	-
	200	4.04e-6	3.00	7.65e-6	3.17	7.48e-6	3.18	3.58e-5	2.21
	400	5.05e-7	3.00	8.29e-7	3.20	8.17e-7	3.20	4.57e-6	2.97
	600	1.50e-7	3.00	2.26e-7	3.20	2.23e-7	3.20	1.35e-6	3.02
	800	6.31e-8	3.00	8.72e-8	3.31	8.60e-8	3.31	5.72e-7	2.97
	1000	3.23e-8	3.00	4.21e-8	3.27	4.15e-8	3.26	2.95e-7	2.97
Test 2	100	1.48e-3	-	1.52e-3	-	1.46e-3	-	1.87e-3	-
	200	1.98e-4	2.91	1.68e-4	3.18	1.68e-4	3.12	2.61e-3	2.84
	400	2.58e-5	2.94	1.79e-5	3.23	1.78e-5	3.23	3.35e-5	2.96
	600	8.25e-6	2.81	4.69e-6	3.31	4.70e-6	3.29	9.59e-6	3.08
	800	4.64e-6	2.00	1.81e-6	3.31	1.80e-6	3.33	3.93e-6	3.10
	1000	3.46e-6	1.31	8.64e-7	3.32	8.61e-7	3.31	2.03e-6	2.96

Note:

- Deterioration of accuracy with ENO3 in Test 2
- ▶ SP-WENO and SP-WENOc have accuracy > 3 jump vanishing
- DSP-WENO more dissipative but third-order

D. Rav

DSP-WENO

Linear advection: Shape

Solved on [0, 1.4] till T = 1.4 with periodic BC

Under/overshoots with SP-WENO and SP-WENOc

Euler equations: 1D (modified) shock tube

Solved on [0,1] till T=0.2 with Neumann BC. N=400

Euler equations: 1D Lax shock tube

Solved on [-5, 5] till T = 1.3 with Neumann BC. N = 200

Solved on $[0,1] \times [0,1]$ till T=0.25 with Neumann BC using 400×400 cells

Euler equations: 2D Riemann problem (conf. 12)

Solution along x=0.89 and x=0.5 Reference solution using ENO3 on 1200×1200 mesh.

Conclusion

- Demonstrated a data-driven approach to learn reconstruction algorithms.
- Trained a network to learn WENO weights.
- Strong embedding of structural properties, such as the sign property.
- Network agnostic of any specific conservation model single network for all models.
- ▶ Performs better than existing SP-WENO variants.
- Next steps: higher-order DSP-WENO, reconstruction on unstructured grids, hybrid schemes.

Conclusion

- Demonstrated a data-driven approach to learn reconstruction algorithms.
- Trained a network to learn WENO weights.
- Strong embedding of structural properties, such as the sign property.
- Network agnostic of any specific conservation model single network for all models.
- Performs better than existing SP-WENO variants.
- Next steps: higher-order DSP-WENO, reconstruction on unstructured grids, hybrid schemes.

Questions?

Need to pick weights $w_0, w_1, \tilde{w}_0, \tilde{w}_1$ such that:

▶ Consistency:

$$w_0 + w_1 = 1$$
, $\tilde{w}_0 + \tilde{w}_1 = 1$, $w_0, w_1, \tilde{w}_0, \tilde{w}_1 \ge 0$.

 Satisfy the sign property, which can be expressed in terms of an explicit constraint

$$\tilde{w}_0(1-\theta^-) + w_1(1-\theta^+) \ge 0$$

where the jump ratios are

$$\theta^- = \frac{\Delta z_{i+\frac{3}{2}}}{\Delta z_{i+\frac{1}{2}}} = \frac{z_{i+2} - z_{i+1}}{z_{i+1} - z_i}, \quad \theta^+ = \frac{\Delta z_{i-\frac{1}{2}}}{\Delta z_{i+\frac{1}{2}}} = \frac{z_{i+2} - z_{i+1}}{z_{i+1} - z_i}$$

Burgers equation: isolated shock wave

Solving $\partial_t u + \partial_x u^2/2 = 0$ on [-1,1] till T=0.5 with Neumann BC. N=100

Under/overshoots with all methods! But better profile with DSP-WENO prior to the shock.

Euler equations

The full 3D model:

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{u} \\ E \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{u} \\ p \mathbf{I} + \rho (\mathbf{u} \otimes \mathbf{u}) \\ (E+p) \mathbf{u} \end{bmatrix} = \mathbf{0},$$

Total energy

$$E = \rho \left(\frac{|\mathbf{u}|^2}{2} + e \right).$$

with the internal energy e given by EOS

$$e = \frac{p}{(\gamma - 1)\rho}$$

where $\gamma=1.4$ is the ratio of specific heats.

Solved on [-5, 5] till T = 1.8 with Neumann BC. N = 400

