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Operator learning

Consider the generic PDE:
L(u(x)) = f(z), Vxe
Interested in approximating the solution operator

S:F—YV, S(f)y=u(sf)
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Operator learning

Consider the generic PDE:
L(u(x)) = f(z), Vxe
Interested in approximating the solution operator
S:F—V, S(f) =ulsf)

» Deep Operator Networks (DeepONets) [Lu et al., 2021]
» Comprise two subnetworks: the trunk (basis) and the branch (coefficients).
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Operator learning

Consider the generic PDE:
L(u(x)) = f(z), Vxe
Interested in approximating the solution operator
S:F—V, S(f) =ulsf)
» Deep Operator Networks (DeepONets) [Lu et al., 2021]
» Comprise two subnetworks: the trunk (basis) and the branch (coefficients).

» Neural operators — an alternate strategy to approximate S

» Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel
Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...
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Consider the generic PDE:
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Interested in approximating the solution operator

S:F—V, S(f)y=u(sf)
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This talk: Operator Networks that mimic (approximate) variational form of the
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Variationally Mimetic Operator Networks
Patel, R., Abdelmalik, Hughes, Oberai
CMAME, 2024
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Problem Statement

» Consider a generic linear elliptic PDE:

L(u(z);0(x)) = f(x), VxeQ,
B(u(x);0(x)) = n(x), Vaxely,
u(x) =0, Ve ely,

where f € F C L*(Q),n e N C L*(T},), 0 € T C L™=(Q).

» The variational formulation: find u € V C H, such thatV w € V,

a(w,u;0) = (w, f) + (w,n)r,.

» The solution operator is

S:X=FxTxN-—VCH,
(f,0,m) = u(; f,0,m)

This mapping can be non-linear in 6.
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Discrete weak formulation

» Evaluate approximate solution in finite-dimensional space
Vi = span{¢;(x) : 1 <i < q}.

» Discrete weak formulation: find " € V" such that vV w" € V*,

a(w",u";0") = (", ") + (w,n")r,,.

» Any function v" € V" can be written as
(@) =VIe(@), V=(0,,0), @@ =(d1(x), - de(x)) "

Plugging this into discrete weak form gives...
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Discrete weak form

» Linear system of equations,
K(0"U = MF + MN
where the matrices are given by

Kij(0") = a(¢s, 6530"),  Mij = ($i,6;), Mij = (¢i,¢)r, 1<i,j<q.
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Discrete weak form

» Linear system of equations,
K(0"U = MF + MN

where the matrices are given by

Kij(0") = a(¢i, ¢550"), My = (¢i,¢5), Mij = (di,¢5)r, 1<i,j<q.

» Discrete solution operator is
Shixh=F T x N — V"
(fh, oh,nh) — uh(‘; fh70h,nh) — B(fh,nh, Gh)T@
where

B(f*,0".0") =U = K~'(6")(MF + MN).

VarMiON will mimic this structure!
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VarMiON

Evaluate (f, 6, n) at some fixed sensor nodes to get the discrete sample vectors

-~

F= (f({fl), 7f(55k‘)—ra é = (9(&:\1)7 79(55’&‘))T7 J/\?: (77(51{)7 aﬂ@Z')T
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VarMiON

The network is comprises several sub-networks with latent dimension p:

Nonlinear branch pXp
D(®)
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?

non-linear CNN that outputs a matrix
Nonlinear branch pPXDp

D(®)
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Linear branch
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?
» Two linear branches with learnable matrices A, A

Nonlinear branch pPXp
D(®)

MatVecProd

Linear branch px1
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Linear branch px1
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dx1 linear (learnable) transformations
Nonlinear trunk px1

@_’ ()

D. Ray VarMiON



VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?
» Two linear branches with learnable matrices A, A

» Non-linear trunk (basis of VarMiON): x + 7(x) = (11(x), - - - 7p(x)) "

Nonlinear branch pPXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

a2 = £l
X X X
- - —

dx1
Nonlinear trunk
(@) non-linear basis of VarMiON

T
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VarMiON

VarMiON operator is
S:R* x R* x R¥ — V"™ = span{ri(z): 1 <i < p}
(F,0,N)~u(;F,0,N)=6(/"1"6""r

where o R o
B(F,©,H) = D(®)(AF + AN).

Nonlinear branch pXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

Nonlinear trunk
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VarMiON

VarMiON operator is

S:R* x R* x R¥ — V"™ = span{ri(z): 1 <i < p}
(F,,N) — a(;F,0,N) = B(f" 1", ")~

where o - — L
B(F,0,H)=D(O©)(AF + AN). ‘
|
Compare this to the discrete solution operator: /
S FM X T NP V" %

(f", 0" ") s G 10" 0™ < B 0" 0M) T @

where -
B(f",0",n") = K '(6")(MF + MN).
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VarMiON

» Can prove D is the reduced order counterpart of K ' (p < q)
» DeepONet typically has a single nonlinear branch for inputs.
» VarMiON explicitly constructs matrix operators. DeepONet does not.
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Error estimates

Training
» Use supervised learning.
» Dataset generated using another numerical method, such as FEM
» Find network parameters to minimize a least squares mismatch loss.

Once trained, the generalization error for any (f,6,7) € X

E(f,0,n) == |S(f.0,n) — S(F,©,N)| 2.
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Error Estimates

Generalization error estimate (Patel et al., 2024)
If X := F x T x N is compact, the non-linear branch is Lipschitz, i.e.,

|ID(®) — D(®)|2 < Lp||© — &2

Then, the generalization error can be bounded as

1 1 1
Erom=¢ (eh Tet Vet nt ment Lm)

where

e, — numerical error in training data (FEM error)
€s — covering estimate
e; — training error

a, o', — quadrature convergence rates

g

The constant C depends on the stability constants of S and S.
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Numerical Example

F'l
Steady-state heat conduction
-V - (0(z)Vu(z)) = f(x), Ve, I, 7 I,
0(x)Vu(z) n(x) = nx), Vzel,
u(x) =0, Ve el
T

n

Input: thermal conductivity 6, heat sources f, and heat flux n. Output:
temperature w.

Inputs: Gaussian Random Fields.

Networks with two inputs (6, f) and three inputs (9, f, n).

Compare VarMiON and vanilla DeepONet with same p

Similar number of network parameters. Identical trunk architecture.

Robustness: sampling (spatially uniform or random) and trunk functions
(ReLU or RBF).

v
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Numerical Example: Two Inputs

» 10,000 samples generated using Fenics.

» 9,000 for training/validation and 1,000 for testing.
» Latent space p = 64 for DeepONet and VarMiON.
» Average value of relative L, error reported below.

Case Model Number of parameters  Relative L, error
Randomly sampled input  DeepONet 111,248 1.07 £ 0.39 %
with ReLU Trunk VarMiON 109,077 0.96 + 0.25 %
Uniformly sampled input  DeepONet 49,928 1.98 + 0.79 %
with ReLU Trunk VarMiON 46,345 1.01 + 0.39 %
Uniformly sampled input  DeepONet 17,911 1.39 £ 0.60 %
with RBF Trunk VarMiON 17,409 0.84 + 0.40 %
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Numerical Example: Two inputs

Predictions by VarMiON and DeepONet.

f 7] u (true) u (VarMiON) error u (DeepONet) error
0.46 % 2.37 %
015 -
06
05 -
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03 03 0.00
07 06
0.6 0.4 02
05 o1
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00
0s
o os 02
o 0.5 03 01
0.4 02
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Numerical Example: Three Inputs

» Input functions f, 6 and 7.
» 10,000 samples generated using Fenics.
» 9,000 for training/validation and 1,000 for testing — same as two input case!
» Latent space p = 72 for DeepONet and VarMiON.
» Average value of relative L, error reported below.
Case Model Number of parameters  Relative L. error
Uniformly sampled input DeepONet 31,143 6.29 + 3.43%
with RBF Trunk VarMiON 31,849 236 +1.13%
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Numerical Example: Three inputs

Predictions by VarMiON and DeepONet.

f 2] n u (true) u (VarMiON) error u (DeepONet) error

1.57 % 5.95 %
060 — top
— bottom

055

050

nos\/‘

-
N

— wp
— bottom
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Numerical Example: Comparison with MIONet

MIONet has been proposed [Jin et al., 2022] to handle multiple input functions.

Comparison as the number of training samples n is varied

Training dataset size Model Relative L error
DeepONet 10.23 £5.20

n = 1000 MIONet 88.07 + 69.68
VarMiON 4.27+£2.23
B DeepONet 9.0 +5.63
n = 2000 MIONet 85.03 £123.77
VarMiON ~ 4.04 4 1.86
B DeepONet  7.19+3.75
n = 4000 MIONet  88.39  62.10
VarMiON ~ 2.90 4 1.50
o DeepONet  6.28 +3.55

MIONet 82.89 + 34.19
VarMiON 2.74+1.31
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A word on non-linear PDEs

» VarMiON needs to be carefully constructed due to the dependence on the
structure of the variational form.

» Have constructed a VarMiON for the regularized Eikonal equation.

» We believe the VarMiON architecture needs to be customized depending on
the type of PDE (ongoing work)
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Concluding remarks

» VarMiON: an operator network that mimics variational formulation.

» Handle multiple inputs — precise specification of branch nets based on weak
form.

» Error analysis reveals important components.

» Numerical results point to better and more robust performance.

» Possible extension to nonlinear advection-diffusion-reaction.

» Need a custom architecture based on the weak form.

» Next? Petrov-Galerkin variant, other nonlinear operators, physics-informed

residuals, time-dependent problems, hyperbolic systems, and specification of
geometry, etc.
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Concluding remarks

» VarMiON: an operator network that mimics variational formulation.

» Handle multiple inputs — precise specification of branch nets based on weak
form.

» Error analysis reveals important components.

» Numerical results point to better and more robust performance.

» Possible extension to nonlinear advection-diffusion-reaction.

» Need a custom architecture based on the weak form.

» Next? Petrov-Galerkin variant, other nonlinear operators, physics-informed

residuals, time-dependent problems, hyperbolic systems, and specification of
geometry, etc.

Questions?
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Parameters for linear PDE experiments

2 input case:

FeR™ ©cR™ p=64

3 input case:

FeR™, O©cR™ NecR® p=712
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Numerical Example: Two inputs

Density of scaled L, error (ReLU trunk and uniform spatial sampling).

1.6 DeepONet
1.4 = VarMiON

0 2 4 6 8 10
Val. error (in %)
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Numerical Example: Two inputs

Predictions by VarMiON and DeepONet.
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Numerical Example: Three inputs

Density of scaled L. error (RBF trunk and uniform spatial sampling).

DeepOMet

0.5
B varMioN

0.4

0.3

Density

0.2

0.1

0 5 10 15 20 25 30

Val. error (in %)
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Numerical Example: Three inputs

Predictions by VarMiON and DeepONet.
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Numerical Example: Comparison with MIONet

MIONet has been proposed [Jin et al., 2022] to handle multiple input functions.

Separate branch for each f;, followed by a Hadamard product

B=B' @B 0 0B, uzifi, fa)=p8"T(x)

“/ J;l\ = Fl Branch //31\

AN N Subnen \

VRN o

(f2) Fz Branch / 2
/

ug(a; fu < fn)

Subnet 1 \/3
Bvanch \
Dot —>
Trunk ( } R
Subnet
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Training the VarMiON

For 1 < j < J, consider distinct samples (f;,0;,n;) € X.

Obtain the discrete approximations (f;',07, 7)) € X"

Find the discrete numerical solution u} = S"(f}', 0%, n}).

Choose output nodes {z;}/~, to sample the numerical solution v/, = u” (z;).
Generate the input vectors (F}, ©;, N;).

Collect input & output to form training set with J x L samples

o 0 M0~

S:{(Eaéjvl/\]\-ﬁmlvu?l):1§j§‘]7 1SZSL}7

Find the network weights that minimize the loss function

J L
DRSO IUES SRR AL
j=1 =1

where %) are all the trainable parameters of the VarMiON.
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