A high-resolution energy preserving method for the rotating shallow water equations

Deep Ray

deep.ray@epfl.ch http://deepray.github.io

joint work with Praveen Chandrashekar

ENUMATH-2017, Voss 27 September 2017

Supported in part by the AIRBUS Group Corporate Foundation Chair in Mathematics of Complex Systems, established in TIFR/ICTS, Bangalore

Shallow water equations

Conservative form:

$$\frac{\partial h\mathbf{u}}{\partial t} + \nabla \cdot \left(h\mathbf{u} \otimes \mathbf{u} + \frac{1}{2}gh^2\mathbf{I}\right) = -\mathscr{F}(\mathbf{k} \times h\mathbf{u}) - gh\nabla h_s$$
$$\frac{\partial h}{\partial t} + \nabla \cdot (h\mathbf{u}) = 0$$

 $\begin{array}{lll} \mathbf{u} &= (u_1, u_2) \rightarrow \mbox{ horizontal velocity}, & g \rightarrow \mbox{ acc. due to gravity}, \\ \mathbf{k} &\rightarrow \mbox{ unit normal to Earth's surface}, & \mathscr{F} = 2\Omega \sin \theta \rightarrow \mbox{ Coriolis term} \\ & \mathbf{k} \cdot \mathbf{u} = 0 \end{array}$

Shallow water equations

Vector-invariant form:

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \nabla \Phi + (\omega + \mathscr{F}) \mathbf{u}^{\perp} &= 0\\ \frac{\partial h}{\partial t} + \nabla \cdot (h \mathbf{u}) &= 0 \end{aligned}$$

 $\Phi = gH + K, \qquad K = \frac{1}{2} |\mathbf{u}|^2, \qquad \omega = k \cdot \nabla \times \mathbf{u}, \qquad \mathbf{u}^{\perp} = \mathbf{k} \times \mathbf{u}$

Conservation of energy

For $\mathbf{U} = (u_1, u_2, h)$, let

$$\eta(\mathbf{U}) = \underbrace{hK + \frac{1}{2}gH^2}_{\text{total energy}}, \quad \mathbf{q} = (gH + K)h\mathbf{u}$$

Using the shallow water equations, we can show

$$\frac{\partial \eta}{\partial t} + \nabla \cdot \mathbf{q} = 0 \quad \Longrightarrow \quad \frac{\mathsf{d}}{\mathsf{d}t} \int \eta \mathsf{d}\mathbf{x} = 0$$

Vorticity dynamics

Absolute vorticity:

$$\vartheta := \omega + \mathscr{F}$$

Taking curl of velocity equations

$$\frac{\partial \vartheta}{\partial t} + \nabla \cdot \vartheta = 0 \quad \Longrightarrow \quad \frac{\mathsf{d}}{\mathsf{d}t} \int \vartheta \mathsf{d}\mathbf{x} = 0$$

Potential vorticity:

$$\zeta := \frac{\vartheta}{h}$$

is advected

$$\frac{\partial \zeta}{\partial t} + \mathbf{u} \cdot \nabla \zeta = 0 \qquad \Longrightarrow \qquad \zeta \text{ constant along stream lines}$$
$$\implies \qquad \max./\min. \text{ preserved}$$

Every quantity of the form

$$C := \int h \mathcal{G}\left(rac{artheta}{h}
ight) \mathsf{d} \mathbf{x}$$
 (Casimirs)

is conserved. In particular,

- $\mathcal{G} \equiv 1 \rightarrow$ conservation of total mass
- $\mathcal{G}(s) = s \rightarrow \text{conservation of total } \vartheta$
- $\mathcal{G}(s) = s^2/2 \rightarrow \text{conservation of total potential enstrophy } \frac{\vartheta^2}{2h}$

Existing energy preserving approaches for SWE

Conservative form: (Entropy framework)

- Energy conservative/stable schemes (Tadmor et al. 2008, 2009)
- Well-balanced energy stable scheme (Fjordholm et al. 2011)
- ...

Vector-invariant form:

- 2nd order energy and potential enstrophy preserving FD scheme (Arakawa and Lamb, 1981)
- Extension to geodesic (icosahedral) grids (Ringler and Randall, 2002)
- TRISK schemes (Thuburn et al) on non-orthogonal polygonal grids using DEC (cannot preserve both simultaneously)
- AL scheme extended to non-orthogonal quad. grids (Toy and Nair, 2016)
- Energy and potential enstrophy preserving scheme using Hamiltonian tools on planar grids (Salmon, 2007)
- Hamiltonian + DEC: extension to arbitrary spherical grids (Eldred and Randall, 2016)

$\mathbf{u} - h - \vartheta$ model

Since ϑ is important, we consider the larger model

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \Phi + \vartheta \mathbf{u}^{\perp} = 0$$
$$\frac{\partial h}{\partial t} + \nabla \cdot (h\mathbf{u}) = 0$$
$$\frac{\partial \vartheta}{\partial t} + \nabla \cdot (\vartheta \mathbf{u}) = 0$$

$\mathbf{u} - h - \vartheta$ model

Since ϑ is important, we consider the larger model

$$\begin{aligned} \frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{f}_1(\mathbf{U})}{\partial x} + \frac{\partial \mathbf{f}_2(\mathbf{U})}{\partial y} &= -\mathbf{S}, \\ \frac{\partial \vartheta}{\partial t} + \frac{\partial J_1}{\partial x} + \frac{\partial J_2}{\partial y} &= 0, \end{aligned}$$

where

$$\begin{split} \mathbf{U} &= \begin{pmatrix} u_1 \\ u_2 \\ h \end{pmatrix}, \quad \mathbf{f}_1(\mathbf{U}) = \begin{pmatrix} \Phi \\ 0 \\ hu_1 \end{pmatrix}, \quad \mathbf{f}_2(\mathbf{U}) = \begin{pmatrix} 0 \\ \Phi \\ hu_2 \end{pmatrix}, \\ (J_1, J_2) &= \vartheta \mathbf{u}^\top, \qquad \mathbf{S} = (-u_2 \vartheta, u_1 \vartheta, 0)^\top \end{split}$$

Finite difference scheme

Discretize the domain using 2D Cartesian mesh

$$\begin{array}{rcl} I_{i,j} & = & [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}) \times [y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}) & \longrightarrow & \mbox{cell} \\ \mathbf{x}_{i,j} & = & (x_i, y_j) = (i\Delta x, j\Delta y) & \longrightarrow & \mbox{cell center} \end{array}$$

Consider the FD scheme

$$\begin{aligned} \frac{\mathrm{d}\mathbf{U}_{i,j}}{\mathrm{d}t} + \frac{\left(\mathbf{F}_{i+\frac{1}{2},j}^x - \mathbf{F}_{i-\frac{1}{2},j}^x\right)}{\Delta x} + \frac{\left(\mathbf{F}_{i,j+\frac{1}{2}}^y - \mathbf{F}_{i,j-\frac{1}{2}}^y\right)}{\Delta y} = -\mathbf{S}_{i,j},\\ \frac{\mathrm{d}\vartheta_{i,j}}{\mathrm{d}t} + \frac{\left(J_{i+\frac{1}{2},j}^x - J_{i-\frac{1}{2},j}^x\right)}{\Delta x} + \frac{\left(J_{i,j+\frac{1}{2}}^y - J_{i,j-\frac{1}{2}}^y\right)}{\Delta y} = 0 \end{aligned}$$

Energy preserving scheme

Theorem (Similar to entropy conservative scheme [Tadmor et al.])

Let $\eta(\mathbf{U})$ and $\mathbf{q} = (q_1, q_2)$ be the energy and energy flux. Define the vector $\mathbf{V} = \eta'(\mathbf{U})$ and the scalar energy potentials

$$\Psi^x := \left\langle \mathbf{V}, \mathbf{f}_1 \right\rangle - q_1, \quad \Psi^y := \left\langle \mathbf{V}, \mathbf{f}_2 \right\rangle - q_2$$

If the numerical flux functions $\mathbf{F}^x, \mathbf{F}^y$ satisfy the conditions

$$\left\langle \Delta \mathbf{V}_{i+\frac{1}{2},j},\mathbf{F}_{i+\frac{1}{2},j}^{x}\right\rangle = \Delta \Psi_{i+\frac{1}{2},j}^{x}, \quad \left\langle \Delta \mathbf{V}_{i,j+\frac{1}{2}},\mathbf{F}_{i,j+\frac{1}{2}}^{y}\right\rangle = \Delta \Psi_{i,j+\frac{1}{2},j}^{y}$$

then, the scheme preserves energy, i.e.,

$$\frac{\mathrm{d}\eta(\mathbf{U}_i)}{\mathrm{d}t} + \frac{\left(q_{i+\frac{1}{2},j}^x - q_{i-\frac{1}{2},j}^x\right)}{\Delta x} + \frac{\left(q_{i,j+\frac{1}{2}}^y - q_{i,j-\frac{1}{2}}^y\right)}{\Delta y} = 0.$$

The following second-order two-point flux satisfies the algebraic condition

$$\mathbf{F}_{i+\frac{1}{2},j}^{x} = \frac{1}{2} \big(\mathbf{f}_{1}(\mathbf{U}_{i,j}) + \mathbf{f}_{1}(\mathbf{U}_{i+1,j}) \big), \quad \mathbf{F}_{i,j+\frac{1}{2}}^{y} = \frac{1}{2} \big(\mathbf{f}_{2}(\mathbf{U}_{i,j}) + \mathbf{f}_{2}(\mathbf{U}_{i,j+1}) \big)$$

The following second-order two-point flux satisfies the algebraic condition

$$\mathbf{F}_{i+\frac{1}{2},j}^{x} = \frac{1}{2} \big(\mathbf{f}_{1}(\mathbf{U}_{i,j}) + \mathbf{f}_{1}(\mathbf{U}_{i+1,j}) \big), \quad \mathbf{F}_{i,j+\frac{1}{2}}^{y} = \frac{1}{2} \big(\mathbf{f}_{2}(\mathbf{U}_{i,j}) + \mathbf{f}_{2}(\mathbf{U}_{i,j+1}) \big)$$

Can obtain 2p-th order flux using

$$\mathbf{F}_{i+\frac{1}{2}}^{x,2p} = \sum_{r=1}^{p} \alpha_r^p \sum_{s=0}^{r-1} \mathbf{F}^x(\mathbf{U}_{i-s}, \mathbf{U}_{i-s+r}) \quad \text{(Lefloch et al., 2002)}$$

The following second-order two-point flux satisfies the algebraic condition

$$\mathbf{F}_{i+\frac{1}{2},j}^{x} = \frac{1}{2} \big(\mathbf{f}_{1}(\mathbf{U}_{i,j}) + \mathbf{f}_{1}(\mathbf{U}_{i+1,j}) \big), \quad \mathbf{F}_{i,j+\frac{1}{2}}^{y} = \frac{1}{2} \big(\mathbf{f}_{2}(\mathbf{U}_{i,j}) + \mathbf{f}_{2}(\mathbf{U}_{i,j+1}) \big)$$

Can obtain 2p-th order flux using

$$\mathbf{F}_{i+\frac{1}{2}}^{x,2p} = \sum_{r=1}^{p} \alpha_r^p \sum_{s=0}^{r-1} \mathbf{F}^x(\mathbf{U}_{i-s}, \mathbf{U}_{i-s+r}) \quad \text{(Lefloch et al., 2002)}$$

- What about the flux for ϑ ?
- Source term depends on ϑ .
- Central scheme bad near steep gradients.

w

Use finite difference WENO for ϑ (Shu, 1998) **Step 1** (Flux splitting):

$$(J_1)^{\mathscr{U}}(\vartheta, \mathbf{u}) = \frac{1}{2} \left(J_1(\vartheta) + \alpha^x \vartheta \right), \quad (J_1)^{\mathscr{D}}(\vartheta, \mathbf{u}) = \frac{1}{2} \left(J_1(\vartheta) - \alpha^x \vartheta \right)$$

here $\alpha^x = \max_{i,j} \{ |(u_1)_{i,j}| \}$

Use finite difference WENO for ϑ (Shu, 1998) **Step 1** (Flux splitting):

$$(J_1)^{\mathscr{U}}(\vartheta, \mathbf{u}) = \frac{1}{2} (J_1(\vartheta) + \alpha^x \vartheta), \quad (J_1)^{\mathscr{D}}(\vartheta, \mathbf{u}) = \frac{1}{2} (J_1(\vartheta) - \alpha^x \vartheta)$$

where $\alpha^x = \max_{i,j} \{ |(u_1)_{i,j}| \}$

Step 2 (Reconstruct upwind flux): Set $\phi_i = (J_1)^{\mathscr{U}}(\vartheta_i, \mathbf{u}_i)$

$$\begin{split} \phi_{i+\frac{1}{2}}^{(0),-} &= \frac{1}{3}\phi_i + \frac{5}{6}\phi_{i+1} - \frac{1}{6}\phi_{i+2} \\ \phi_{i+\frac{1}{2}}^{(1),-} &= -\frac{1}{6}\phi_{i-1} + \frac{5}{6}\phi_i + \frac{1}{3}\phi_{i+1} \xrightarrow{i-\frac{3/2}{i-1}} \xrightarrow{i-\frac{1}{2}} \xrightarrow{i+\frac{1}{2}} \xrightarrow{i+\frac{3}{2}} \xrightarrow{i+\frac{5}{2}} \\ \phi_{i+\frac{1}{2}}^{(2),-} &= \frac{1}{3}\phi_{i-2} - \frac{7}{6}\phi_{i-1} + \frac{11}{6}\phi_i \end{split}$$

5-th order WENO approximation is given by

$$(J^x)_{i+\frac{1}{2}}^{\mathscr{U}} = \phi_{i+\frac{1}{2}}^- = w_0 \phi_{i+\frac{1}{2}}^{(0),-} + w_1 \phi_{i+\frac{1}{2}}^{(1),-} + w_2 \phi_{i+\frac{1}{2}}^{(2),-}$$

Use finite difference WENO for ϑ (Shu, 1998) **Step 3** (Reconstruct downwind flux): Set $\phi_{i+k} = (J_1)^{\mathscr{D}}(\vartheta_{i-k+1}, \mathbf{u}_{i-k+1})$ and repeat Step 2 to get $(J^x)_{i+\frac{1}{2}}^{\mathscr{D}}$

Use finite difference WENO for ϑ (Shu, 1998) **Step 3** (Reconstruct downwind flux): Set $\phi_{i+k} = (J_1)^{\mathscr{D}}(\vartheta_{i-k+1}, \mathbf{u}_{i-k+1})$ and repeat Step 2 to get $(J^x)_{i+\frac{1}{2}}^{\mathscr{D}}$

Step 4: Add fluxes to get

$$J^x_{i+\frac{1}{2}} = (J^x)^{\mathscr{U}}_{i+\frac{1}{2}} + (J^x)^{\mathscr{D}}_{i+\frac{1}{2}}$$

Use finite difference WENO for ϑ (Shu, 1998) **Step 3** (Reconstruct downwind flux): Set $\phi_{i+k} = (J_1)^{\mathscr{D}}(\vartheta_{i-k+1}, \mathbf{u}_{i-k+1})$ and repeat Step 2 to get $(J^x)_{i+\frac{1}{2}}^{\mathscr{D}}$

Step 4: Add fluxes to get

$$J_{i+\frac{1}{2}}^{x} = (J^{x})_{i+\frac{1}{2}}^{\mathscr{U}} + (J^{x})_{i+\frac{1}{2}}^{\mathscr{D}}$$

VI-EP4 scheme: – 4-th order energy preserving fluxes $\mathbf{F}_{i+\frac{1}{2}}^{x,4}$, $\mathbf{F}_{j+\frac{1}{2}}^{y,4}$

- 5-th order FD-WENO for ϑ
- time-marching with RK4

Advecting vortex: accuracy

$$u_1 = 1 + c_1 y \exp(-c_2 r^2), \quad u_2 = -c_1 x \exp(-c_2 r^2),$$

$$H = 1 - \frac{c_1^2}{4c_2 g} \exp(-2c_2 r^2), \quad h_s = 0, \quad r = \sqrt{x^2 + y^2},$$

$$c_1 = 0.04, \quad c_2 = 0.02, \quad g = 1, \quad \mathscr{F} = 0.$$

Advecting vortex: Accuracy

	u_1				u_2			
N	L_h^1		L_h^∞		L_h^1		L_h^∞	
	error	rate	error	rate	error	rate	error	rate
50	1.43e-00	-	5.31e-03	-	1.87e-00	-	9.59e-03	-
100	5.05e-02	4.83	3.30e-04	4.01	6.84e-02	4.77	4.69e-04	4.35
200	1.63e-03	4.95	1.11e-05	4.90	2.27e-03	4.91	1.60e-05	4.87
300	2.23e-04	4.91	1.40e-06	5.11	3.14e-04	4.88	2.11e-06	4.99
400	5.62e-05	4.79	3.12e-07	5.21	7.96e-05	4.77	4.99e-07	5.01
			h			ı	9	
N	L_h^1	1	h L_h^∞		L_h^1	ı	$\frac{\partial}{\partial L_h^\infty}$	
N	L _h ¹ error	/ rate	$\frac{h}{L_h^\infty}$ error	rate	L _h error	ז rate	$\frac{1}{2}$ L_h^∞ error	rate
N 50	L _h ¹ error 7.59e-01	/ rate -	$ \begin{array}{c} L_h^{\infty} \\ \hline \\ error \\ \hline \\ 2.11e-03 \end{array} $	rate -	L _h ¹ error 6.77e-01	ा rate -	$\begin{array}{c} 0\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	rate -
N 50 100	<i>L</i> ¹ _{<i>h</i>} error 7.59e-01 2.78e-02	/ rate - 4.77	h error 2.11e-03 9.14e-05	rate - 4.53	<i>L</i> ¹ _{<i>h</i>} error 6.77e-01 3.55e-02	rate - 4.25	$\frac{D_{h}^{\infty}}{E_{h}^{\infty}}$ error 6.14e-03 3.04e-04	rate - 4.33
N 50 100 200	L _h ¹ error 7.59e-01 2.78e-02 1.13e-03	/ rate - 4.77 4.62	h error 2.11e-03 9.14e-05 3.55e-06	rate - 4.53 4.68	L _h ¹ error 6.77e-01 3.55e-02 1.14e-03	rate - 4.25 4.96	$\frac{D_{h}^{\infty}}{1.18e-05}$	rate - 4.33 4.68
N 50 100 200 300	L ¹ error 7.59e-01 2.78e-02 1.13e-03 1.88e-04	/ rate - 4.77 4.62 4.42	$\begin{array}{c} h \\ & L_h^\infty \\ error \\ 2.11e-03 \\ 9.14e-05 \\ 3.55e-06 \\ 5.57e-07 \end{array}$	rate - 4.53 4.68 4.57	$\begin{array}{c} L_{h}^{1} \\ \text{error} \\ 6.77\text{e-}01 \\ 3.55\text{e-}02 \\ 1.14\text{e-}03 \\ 1.34\text{e-}04 \end{array}$	rate - 4.25 4.96 5.27	$\frac{D_{h}^{\infty}}{1.18e-05}$	rate - 4.33 4.68 4.85

Perturbed geostrophic balance

Domain: $[-5,5]^2$, $T_f = 50$. Geostrophic balance:

$$\mathbf{u} = \left(-\frac{g}{\mathscr{F}}\frac{\mathrm{d}h_0}{\mathrm{d}y}, 0\right), \quad \omega = \frac{g}{\mathscr{F}}\frac{\mathrm{d}^2h_0}{\mathrm{d}y^2}$$
$$h_0(y) = 1 + 0.1\left[\tanh\left(\frac{1-y^2}{0.5}\right) + 1\right], \quad g = 1, \quad \mathscr{F} = 1$$

Perturb:

$$h(x,y) = h_0(y) + h_\delta \exp(-r^2), \quad r^2 = x^2 + y^2, \quad h_\delta = 5e - 3$$

Vector-Invariant model: Solves **u**, h, ϑ

VI-EP4

Conservative model: Solves $h\mathbf{u}, h$

- CM-EP4 (Fjordholm et al., 2009)
- CM-WENO5
- Vorticity with fourth order approximation from **u**

Perturbed geostrophic balance $(u_1 \text{ profiles})$

Min: -3.63e-01

-4.10e-01 -2.05e-01

0.00e+00

Max: 3.63e-01

4.10e-01

2.05e-01

Perturbed geostrophic balance (ω profiles)

VI-EP4

(has implicit dissipation)

CM-EP4

CM-WENO5

Perturbed geostrophic balance (ω profiles)

1.10e+00

Perturbed geostrophic balance

Perturbed geostrophic balance

Flow over an isolated mountain (Toy et al. 2016)

Initially designed for simulation on a sphere. Domain: $[-\pi a, \pi a]^2$, $a = 6.37 \times 10^6 \text{m} \longrightarrow \text{flattened Earth}$

Geostrophic balance:

$$\mathbf{u}(y) = \left(u_0 \cos\left(\frac{y}{a}\right), 0\right), \quad \mathscr{F}(y) = 2\Omega \sin\left(\frac{y}{a}\right)$$
$$H(y) = h_0 - \frac{a}{g}\Omega u_0 \sin^2\left(\frac{y}{a}\right)$$

where

$$h_0 = 5960 \text{m}, \quad u_0 = 20 \text{ms}^{-1}, \quad \Omega = 7.292 \times 10^{-5} \text{s}^{-1}$$

Introduce a mountain:

$$h_s(x,y) = h_{s,\delta} \left(1 - \frac{r}{R} \right), \quad r = \min(R, \sqrt{(x - x_c)^2 + (y - y_c)^2}, \\ h_{s,\delta} = 2000 \text{m}, \quad (x_c, y_c) = \left(-\frac{\pi a}{2}, \frac{\pi a}{6} \right), \quad R = \frac{\pi a}{9}$$

Flow over an isolated mountain (T = 7 days)

Flow over an isolated mountain (T = 7 days)

Conclusion

- Constructed fourth-order accurate energy preserving scheme for rSWE
- Implicit dissipation through upwinding in ϑ
- Smoother approximation of ϑ (via solver)
- Arbitrary high-order energy preserving scheme can be constructed

Thank you.

Advecting vortex: Effect of Coriolis force

$$\mathscr{F} = 0$$
 $\mathscr{F} = 1$

Domain: $[-40, 40]^2$, Mesh: 200×200 .

Advecting vortex: Effect of Coriolis force

$$\mathcal{F} = 0$$

 $\mathcal{F}=1$

Domain: $[-40, 40]^2$, Mesh: 200×200 .

Effect of Coriolis terms

Perturbed geostrophic balance

