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Artificial Intelligence, Machine Learning and Deep Learning

What is machine learning?
I Collect a set of data

S = {xi : 1 ≤ i ≤ n} or S = {(xi , yi ) : 1 ≤ i ≤ n}.

I Train an algorithm to discover patterns or relation between samples.

I Use algorithm to make future prediction on new data.

linear regression clustering generator

Algorithms: regression methods, support vector machines, decision trees,
k-means clustering, deep neural networks.
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Artificial Intelligence, Machine Learning and Deep Learning

What is artificial intelligence?
I Systems with ‘human-like” intelligence.

I Machine learning + something more ...
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Outline

1. Introduction to deep learning
1.1 Multilayer perceptrons (MLPs)
1.2 Convergence results

2. Generative adversarial networks (GANs)

3. Deep learning in inverse problems
3.1 Bayesian formulation for inverse problems
3.2 GANs as prior
3.3 GANs as posterior
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Multilayer perceptrons

Approximate an unknown function

f : x ∈ ΩX 7→ y ∈ ΩY , ΩX ⊂ Rm, ΩY ⊂ Rn.

Assume we only have S = {(xi , yi ) : yi = f (xi ), 1 ≤ i ≤ N}.

Consider MLP with a source layer, L hidden layers and an output layer.

j-th neuron: x j ,(l ) =σ(W j ,(l ) ·x (l−1)+b j ,(l ))

x (0) x (1) x (2) ŷ
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In layer l , 1 ≤ l ≤ L + 1, define

I The weight matrix W (l) and bias vector b(l).

I The affine transform A(l)(x (l−1)) = W (l)x (l−1) + b(l).

I The output x (l) = σ(A(l)(x (l−1))), σ applied component-wise.
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The full MLP defined by

F(x ;θ) = A(L+1) ◦ σ ◦ A(L) ◦ σ ◦ A(L−1) ◦ · · · ◦ σ ◦ A(1)(x)

with trainable parameters θ = {W (l),b(l)}L+1
l=1 ∈ RNθ .
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Multilayer perceptrons (MLPs)

ξ

σ(ξ)

Linear: σ(ξ) = ξ

ξ

σ(ξ)

ReLU: σ(ξ) = max(0, ξ)

α = 0.1
ξ

σ(ξ)

Leaky ReLU: σ(ξ) = max(0, ξ) + αmin(0, ξ)

1

ξ

σ(ξ)

Logistic: σ(ξ) = 1
1+e−ξ

1

−1

ξ

σ(ξ)

σ(ξ) = tanh(ξ)

1

−1

ξ

σ(ξ)

σ(ξ) = sin(ξ)

Question: What would have if we used the linear activation function?
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Multilayer perceptrons

Approximate an unknown function

f : x ∈ ΩX 7→ y ∈ ΩY , ΩX ⊂ Rm, ΩY ⊂ Rn.

Assume we only have S = {(xi , yi ) : yi = f (xi ), 1 ≤ i ≤ N}.
Define a loss function, say MSE

Π(θ) =
1
N

N∑
i=1

(xi ,yi )∈S

‖yi −F(xi ;θ)‖2.

Train the network by solving the optimization problem – using back-propagation

θ∗ = arg min
θ

Π(θ).

Then F(x ;θ∗) ≈ f (x).

Also need to tune network hyper-parameters:
•Width • Depth (L) • Activation function σ • Optimizer • Stopping criteria
• Loss function • Regularization • Dataset • “A cool name for your network!"
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Multilayer perceptrons

Some remarks:

I Typically S is split into Training (to find θ∗), Validation (to tune
hyper-parameters) and Test set.

I Π(θ) non-linear, non-convex – multiple re-trains with different θ initializations.

I Training set further split into mini-batches.

I More sophisticated networks architectures available
I Convolution neural networks – for image data.

I Residual networks – useful for constructing deep networks.

I U-Nets – for image-to-image tasks.

I Autoencoders – for dimension reduction.

I Generative Adversarial Networks (GANs) – learning distribution of data.

I ...
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Universal approximation theorems

Consider MLPs with L hidden layers each of width H. Let K ⊂ Rm be compact.

Theorem (Pinkus, 1999)
Let f : K → R with f ∈ C(K ). Let σ : R→ R be continuous non-polynomial
function. Given ε > 0, there exists an MLP F with a single hidden layer (L = 1),
width H and activation function σ such that

‖F − f‖∞ < ε.

Note:

I We are not assured any bound on H.

I All continuous activations shown earlier will work, except the linear activation.
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Universal approximation theorems

Consider MLPs with L hidden layers each of width H. Let K ⊂ Rm be compact.

Theorem (Kidger and Lyons, 2020)

Let f : K → Rn with f ∈ C(K ). Let σ : R→ R be any non-affine continuous
function which is continuously differentiable at some ξ0 ∈ R with σ′(ξ0) 6= 0. Then
given ε > 0, there exists an MLP F with L hidden layer each of width
H = m + n + 2 such that

‖F − f‖∞ < ε.

Note:

I Result holds for vector-valued functions.

I This time we have a bound on H but not on L.

I All continuous activations shown earlier will work, except the linear activation.
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Universal approximation theorems

Consider MLPs with L hidden layers each of width H. Let K ⊂ Rm be compact.

Theorem (Yarotsky, 2021)

Let f : K → R with f ∈ Cp,α(K ). Define r = p + α. Then, there exists an MLP with
ReLU activation, width H = 2m + 10 and N total trainable parameters, i.e.,
θ ∈ RN , such that,

‖F − f (x)‖∞ < cr,m

(
log(N)

N

)2r/m

where the constant cr,m depends on r and m.

Note:

I For an error threshold ε, we have a bound on H and L(ε).

I The error is lower for higher regularity.

I The error can be is larger for higher-dimensional input domain.

I The error decay is exponential if a combination of ReLU and Sine activation
are used.
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Generating samples from a probability distribution

Given: A set S = {xi : xi ∈ ΩX ⊂ RNX , 1 ≤ i ≤ n} of samples from some PX .
Goal: Discover PX from S and generate new samples .

xi ∈ R2 :

Data-driven
generative algorithms

x ∼ U([0, 1]2) x ∼ N(µ,Σ)

xi ∈ RN×N :
(images)

Binary phase microstructure Handwritten MNIST digits Shepp-Logan phantom

Representing this data in the form of a prior is hard!
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Generative adversarial network (GAN)

Designed by Goodfellow et al. (2014) to learn and sample from a target PX .

Two networks with some suitable architectures.

Generator network g(.; θ):

I Generates fake samples x̃

I g : ΩZ → ΩX .

I Latent variable z ∈ ΩZ ⊂ RNz .

I z ∼ PZ simple distribution, e.g. Gaussian.

I Nz � Nx .

Critic network d(.; φ):

I Distinguishes fake samples from real

I d : ΩX → R.

I x ∼ PX .

I d(x) large for x ∼ PX , small otherwise.

For a metricM on P(ΩX ), define the loss
Π(g, d) := Π(θ,φ) =M(PX , g#PZ ).

Solve the MinMax problem
(g∗, d∗) = arg min

g
arg max

d
Π(g, d) −→ Adversarial Training
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Wasserstein GAN

Proposed by Arjovsky et al. (2017), using the Wasserstein-1 metric

W1(P1,P2) = inf
γ∈J(P1,P2)

E
(x1,x2)∼γ

[‖x1 − x2‖]

Using the Kantorovich-Rubinstein dual characterization, we have

W1(P1,P2) = sup
‖f‖Lip≤1

(
E

x∼P1
[f (x)]− E

x∼P2
[f (x)]

)

Set the loss function as

Π(g, d) = E
x∼PX

[d(x)]− E
z∼PZ

[d(g(z))]

Under the constraint ‖d‖Lip ≤ 1, find

d∗(g) = arg max
d

Π(g, d) = W1(PX ,g#PZ )

Thus, for the optimal generator g∗

g∗ = arg min
g

W1(PX ,g#PZ )

Finally, convergence in W1 implies weak convergence of measures

E
x∼PX

[`(x)] = E
z∼PZ

[`(g∗(z))] , ∀ ` ∈ Cb(ΩX )

−→ moments converge.
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Wasserstein GAN

In practice, at the discrete level

I Generate/obtain the finite dataset S = {xi : xi ∈ ΩX , 1 ≤ i ≤ n}.

I Compute expectations using Monte Carlo

E
x∼PX

[d(x)] ≈ 1
n

n∑
i=1

d(xi ), E
z∼PZ

[d(g(z))] ≈ 1
n

n∑
i=1,zi∼PZ

d(g(zi ))

I Iterative solve the MinMax problem:
I Take N (typically N ≥ 4) optimization steps for d
I Take 1 optimization step for g

I Add a gradient penalty term (Gulrajani, 2017) to constraint d to be 1-Lipschitz

λ
1
n

n∑
j=1

(‖∇x d(xj )‖ − 1)2
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What a GAN can do

Results by Karras et al. (2018) from NVIDIA.
CELEBA-HQ dataset, Nz = 512, Nx = 1024× 1024× 3 = 3.14× 106

−→ dimension reduction!
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Inverse problems

“We call two problems inverses of one another if the formulation of each involves
all or part of the solution of the other. Often, for historical reasons, one of the two
problems has been studied extensively for sometime, while the other is newer and

not so well understood. In such cases, the former is called the direct problem,
while the latter is called the inverse problem.”

– Joseph Keller, 1976
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Inverse problems

Consider the elliptic PDE for the (steady-state) temperature field u with
conductivity κ

−∇ · (κ∇u) = b(ξ), ∀ ξ ∈ Ω

u(ξ) = 0, ∀ ξ ∈ ∂Ω

Direct: Given {PDE, b, κ} f−→ u Inverse: Given {PDE, b, u} f−1
−−→ κ

Challenges with inverse problems:

I Inverse map is not well posed.

I Noisy measurements from direct problem.

I Need to encode prior knowledge about inferred field.

Two approaches: regularization and Bayesian inference.

D. Ray Deep Learning Approaches for Inverse Problems 22



Inverse problems

Consider the elliptic PDE for the (steady-state) temperature field u with
conductivity κ

−∇ · (κ∇u) = b(ξ), ∀ ξ ∈ Ω

u(ξ) = 0, ∀ ξ ∈ ∂Ω

Direct: Given {PDE, b, κ} f−→ u Inverse: Given {PDE, b, u} f−1
−−→ κ

Challenges with inverse problems:

I Inverse map is not well posed.

I Noisy measurements from direct problem.

I Need to encode prior knowledge about inferred field.

Two approaches: regularization and Bayesian inference.
D. Ray Deep Learning Approaches for Inverse Problems 22



Bayesian formulation

Uncertainty in inferred field critical for applications with high-stake decisions.

Example: Medical imaging to detect liver lesions

Example: Inferring basal sliding friction from surface ice velocity of Antarctic ice-shelf
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Bayesian formulation

Notations: We assume all quantities are discretized on some grid

I Parameter we wish to infer x ∈ ΩX ⊂ RNx (e.g. κ on Nx grid points).

I Measured response from direct problem y ∈ ΩY ⊂ RNy (e.g. u on Ny grid
points).

I Direct map f : ΩX → ΩY (e.g. discrete PDE solver). Sometimes,

y = f (x) + η → (additive noise)

where η is noise with distribution Pη.

I Assume that x and y are modelled using random variables X and Y .
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Bayesian formulation

Bayes theorem gives us:

PX |Y (x |y) =
PY |X (y |x)PX (x)

PY (y)

We apply this to the inverse problem: given a measurement y and prior information, infer x

I PX (x) = Pprior
X (x): prior distribution, obtained from samples or other constraints.

I PY |X (y |x) = P like
Y (y |x): the likelihood of observing the measurement y given x . For

additive noise

P like
Y (y |x) = Pη(y − f (x)) → (embedding physics).

I PY (y) = Q: the evidence/normalizing term

Q =

∫
Pη(y − f (x))Pprior

X (x)dx → (hard to compute when Nx � 1).

I PX |Y (x |y) = Ppost
X (x |y): the posterior distribution of x given y .

Bayesian formulation:

Ppost
X (x |y) =

Pη(y − f (x))Pprior
X (x)

Q
∝ Pη(y − f (x))Pprior

X (x)
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X (x): prior distribution, obtained from samples or other constraints.

I PY |X (y |x) = P like
Y (y |x): the likelihood of observing the measurement y given x . For

additive noise

P like
Y (y |x) = Pη(y − f (x)) → (embedding physics).

I PY (y) = Q: the evidence/normalizing term

Q =

∫
Pη(y − f (x))Pprior

X (x)dx → (hard to compute when Nx � 1).

I PX |Y (x |y) = Ppost
X (x |y): the posterior distribution of x given y .

Bayesian formulation:

Ppost
X (x |y) =

Pη(y − f (x))Pprior
X (x)

Q
∝ Pη(y − f (x))Pprior

X (x)
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Bayesian formulation

Posterior distribution

Ppost
X (x |y) ∝ Pη(y − f (x))Pprior

X (x)

Steps:

I Construct/obtain an explicit expression for Pprior
X .

I For a given y , use Markov Chain Monte Carlo (MCMC) to sample from Ppost
X .

I Generate a Markov chain whose stationary distribution is Ppost
X .

I Need to burn the first part of the chain.

One could also use variational inference, which would find the best approximation
of Ppost

X among a parametrised family.
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Bayesian formulation: challenges

I MCMC is prohibitively expensive when Nx is large.

I Characterization of priors for complex data.

Typical Gaussian prior Pprior
X (x) = 1√

2πσ
exp

(
− |x|

2

2σ2

)
However, prior knowledge may be samples like:

Representing this data in the form of a prior is hard!

Resolve both issues using GANs
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Outline

1. Introduction to deep learning
1.1 Multilayer perceptrons (MLPs)
1.2 Convergence results

2. Generative adversarial networks (GANs)

3. Deep learning in inverse problems
3.1 Bayesian formulation for inverse problems
3.2 GANs as prior
3.3 GANs as posterior
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Recall the WGAN

Learn and sample from a target PX .

Generator network g(.; θ):

I Generates fake samples x̃

I g : ΩZ → ΩX .

I Latent variable z ∈ ΩZ ⊂ RNz .

I z ∼ PZ simple distribution, e.g. Gaussian.

I Nz � Nx (dimension reduction)

Critic network d(.; φ):

I Distinguishes fake samples from real

I d : ΩX → R.

I x ∼ PX .

I d(x) large for x ∼ PX , small otherwise.

Solve the MinMax problem:

(g∗, d∗) = arg min
g

arg max
d

Π(g, d) = arg min
g

arg max
d

(
E

x∼PX
[d(x)]− E

z∼PZ
[d(g(z))]

)
Convergence in W1 =⇒ weak convergence

E
x∼PX

[`(x)] = E
z∼PZ

[
`(g∗(z))

]
, ∀ ` ∈ Cb(ΩX )

−→ moments converge.
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GAN as prior

Given:
I A set S = {x1, ..., xn}, where xi ∼ Pprior

X .

I The direct map f (x) (exactly or approximately).

I The noise distribution Pη
I A noisy measurement y

Goal: Determine Ppost
X and evaluate statistics w.r.t. it.

• GAN-based Priors for Uncertainty Quantification, by Patel & Oberai, SIAM/ASA Journal on Uncertainty
Quantification 9(3):1314-1343, 2021.

• Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors, by Patel, Ray &

Oberai, arXiv:2107.02926, 2021.
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GAN as prior

Step 1: Using S, train a WGAN with generator g∗.

Assume:
I g∗ is the optimal generator satisfying the weak relation

E
x∼Pprior

X

[`(x)] = E
z∼PZ

[`(g∗(z))] , ∀ ` ∈ Cb(ΩX ).

I f and Pη are continuous.
Choose

`(x) =
1
Q

ˆ̀(x)Pη(y − f (x)), ˆ̀∈ Cb(ΩX ).

Then, we can get an expression for Ppost
X

E
x∼Pprior

X

[
1
Q

ˆ̀(x)Pη(y − f (x))

]
= E

z∼PZ

[
1
Q

ˆ̀(g∗(z))Pη
(

y − f (g∗(z))
)]

=⇒ E
x∼Ppost

X

[
ˆ̀(x)

]
= E

z∼Ppost
Z

[
ˆ̀(g∗(z))

]
where

Ppost
Z (z|y) =

1
Q

Pη
(

y − f (g∗(z))
)

PZ (z) ∝ Pη
(

y − f (g∗(z))
)

PZ (z)

Sampling x from Ppost
X ≡ sampling z from Ppost

Z and evaluating x = g∗(z).
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GAN as prior

Step 2: Generate an MCMC approximation Pmcmc
Z (z|y) ≈ Ppost

Z (z|y).

Step 3: Evaluate statistics using Monte Carlo

E
x∼Ppost

X

[`(x)] ≈ 1
Nsamples

Nsamples∑
i=1

`(g∗(z))), z ∼ Pmcmc
Z (z|y).

What do we gain?

I Ability to represent complex prior, if S is available.

I Nz � Nx makes MCMC computational tractable.

D. Ray Deep Learning Approaches for Inverse Problems 32



Inferring thermal conductivity

Given u, find κ satisfying

−∇ · (κ∇u) = b(ξ), ∀ ξ ∈ Ω ⊂ R2

u(ξ) = 0, ∀ ξ ∈ ∂Ω

Problem setup:

I Measurement y , noisy temperature field u on a 2D grid.

I Infer x , nodal values of conductivity κ.

I Non-linear forward map f solves the PDE. Implemented in Fenics.

I Noise is assumed to be Gaussian iid.
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Inferring thermal conductivity (MNIST)

Assume that κ is given by MNIST digits (Nx = 784,NZ = 100)

True Generated
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Inferring thermal conductivity (MNIST)

Solving the inference problem on test data
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Inferring thermal conductivity (microstructure)

Microstructure profile given by Cahn-Hilliard (Nx = 4096,NZ = 100)

True Generated

D. Ray Deep Learning Approaches for Inverse Problems 36



Inferring thermal conductivity (microstructure)

Solving the inference problem on test data
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Inverse Radon transform (CT)

Find the tissue density ρ : Ω ⊂ R2 → R given the line Radon transforms

Rt,ψ =

∫
γt,ψ

ρdγ

where γt,ψ is the line at an angle ψ and at a signed-distance of t from the center of
Ω.

Problem setup:

I Infer x , nodal values of ρ.

I Linear forward map f , Radon transform.

I Measurement y , noisy Radon transforms on a set of lines.

I Noise is assumed to be Gaussian iid.
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Inverse Radon transform (CT)

ρ given by perturbed Shepp-Logan phantoms (Nx = 16384,NZ = 100)

True Generated
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Inverse Radon transform (CT)

Solving the inference problem on test data
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Outline

1. Introduction to deep learning
1.1 Multilayer perceptrons (MLPs)
1.2 Convergence results

2. Generative adversarial networks (GANs)

3. Deep learning in inverse problems
3.1 Bayesian formulation for inverse problems
3.2 GANs as prior
3.3 GANs as posterior
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Conditional WGANs

Learning distributions conditioned on another field. Based on work by Adler et al.
(2018) & Almahairi et al. (2018).

Generator network:

I g : ΩZ × ΩY → ΩX .

I z ∼ PZ , Nz � Nx .

I (x , y) ∼ PXY

Critic network:

I d : ΩX × ΩY → R.

I d(x , y) large for real x , small
otherwise.
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Conditional WGANs

I Objective function

L(g, d) = E
(x,y)∼PXY

z∼PZ

[
d(x , y)− d

(
g(z, y), y

)]
I g and d determined (with constraint ‖d‖Lip ≤ 1) through

(g∗, d∗) = arg max
d

arg min
g

L(g, d)

I For the optimal generator g∗ and given y

g∗(., y) = arg min
g

W1(PX |Y ,g#(., y)PZ )

I Convergence in W1 implies weak convergence

E
x∼PX|Y

[`(x)] = E
z∼PZ

[`(g(z, y))] , ∀ ` ∈ Cb(ΩX ).
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GANs as posterior

Given:

I A set S = {(x1, y1), ..., (xn, yn)}, where xi ∼ Pprior
X and yi ∼ PY |X .

I A noisy measurement y

Goal: Determine Ppost
X and evaluate statistics wrt it.

Step 1: Using S, train a WGAN with generator g∗(z, y).

Using Bayes and weak convergence of conditional WGAN for a given y

E
x∼Ppost

X

[`(x)] = E
z∼PZ

[`(g∗(z, y))] , ∀ ` ∈ Cb(ΩX )

Sampling x from Ppost
X ≡ sampling z from PZ and evaluating x = g∗(z, y).
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GANs as posterior

Step 2: Evaluate statistics using Monte Carlo

E
x∼Ppost

X

[`(x)] ≈ 1
Nsamples

Nsamples∑
i=1

`(g∗(z, y))), z ∼ PZ .

What do we gain?

I Ability to represent complex prior, if S is available.

I Nz � Nx .

I Sampling from a GAN is very simple.
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Inferring thermal conductivity

Given u, find κ satisfying

−∇ · (κ∇u) = 10, ∀ ξ ∈ Ω ⊂ R2

u(ξ) = 0, ∀ ξ ∈ ∂Ω

Problem setup:

I Infer x , nodal values of conductivity κ.

I Measurement y , noisy temperature field u on a 2D grid.

I Generate S by sampling x ∼ Pprior
X and evaluating y = f (x) + η.

I Train WGAN on S
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Inferring thermal conductivity

Assume κ is given by circular inclusions (Nx = Ny = 4096,NZ = 50)
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Inferring thermal conductivity

Solving the inference problem
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Inferring thermal conductivity
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Inferring the initial condition

Given u(ξ,T ), find u0

∂u
∂t
−∇ · (2∇u) = 0, ∀ (ξ, t) ∈ Ω× (0, 1)

u(ξ, 0) = u0(ξ), ∀ ξ ∈ Ω

u(ξ, t) = 0, ∀ (ξ, t) ∈ ∂Ω× (0, 1)

Severely ill-posed problem!

Problem setup:

I Infer x , initial temperature field u on a 2D grid.

I Measurement y , noisy temperature field u on a 2D grid.

I Generate S by sampling x ∼ Pprior
X and evaluating y = f (x) + η.

I Train WGAN on S
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Inferring the initial condition

Assume u0 is given by MNIST (Nx = Ny = 784,NZ = 100)
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Inferring the initial condition

Solving the inference problem
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Inferring the initial condition

Solving the inference problem
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Comparing the two approaches

GAN as prior GAN as posterior

Data generation x ∼ Pprior
X x ∼ Pprior

X , y ∼ PY |X

Forward model Need f and ∂f
∂x Possibly need f to generate data

Sampling GAN and MCMC Only GAN

Generalizability Hard to control Better control
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Final remarks

I Neural networks are good universal approximators.

I GANs can be used to learn distributions from data and generate new
samples.

I Using GANs to overcome challenges with Bayesian inference:
I GANs as priors.
I GANS as posterior.

I Ability to capture complex prior information.

I Dimensional reduction using latent space.

I Generate point estimates to quantify uncertainty in inferred field.

I There are many, many other variants of GANs.

I GANs are not the only generative algorithms – Variational Autoencoders
(VAEs), normalizing flows, Deep Boltzman Machines (DBMs),etc.
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