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» Inverse problems and Bayesian inference
» Deep neural networks
» Conditional generative adversarial networks (CGANs)

» Deep posteriors

Deep learning-based posterior inference for inverse probs.



Forward and inverse problems

Consider a forward problem
F:XeQmyeQ, QueR¥™ Q erY
For example, the heat conduction PDE model for temperature field u

ou(s,t)

o V- (k(S)Vu(s, t)) = f(s), V (s, t) € (0,1)2 x (0, T]

u(¢,0) = u(s), vse(0,1)?
u(e, t) =0, Vsed0,1)% x (0,T]

Forward problem: Given uy(s) determine u(s, T)
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Forward and inverse problems

Consider a forward problem
F:XeQmyeQ, QueR¥™ Q erY
For example, the heat conduction PDE model for temperature field u

ou(s,t)

o V- (k(S)Vu(s, t)) = f(s), V (s, t) € (0,1)2 x (0, T]

u(¢,0) = u(s), vse(0,1)?
u(e, t) =0, Vsed0,1)% x (0,T]

Inverse problem: Given u(s, T) infer uy(s)
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Forward and inverse problems

Consider a forward problem
F:XeQmyeQ, QueR¥™ Q erY
For example, the heat conduction PDE model for temperature field u

ou(s,t)

o V- (k(S)Vu(s, 1)) = f(s), VY (s,t) € (0,1)? x (0, T]

u(€,0) = w(s), Vse(01)
u(g, 1) =0, Vs € d(0,1)° x (0, T]
Inverse problem: Given noisy u(s, T) infer uy(s)

]-' n0|se
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Forward and inverse problems

Challenges with inverse problems:
» Inverse map is not well posed.
» Noisy measurements.
» Need to encode prior knowledge about x.

Uncertainty in inferred field critical for applications with high-stake decisions.

Example: Medical imaging to detect liver lesions

Un-safe

Uncertainty
(pt-wise SD)
[Adler et al., 2018]

Measurement Inferred field Measurement Inferred field
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Bayesian framework

Assume x and y are modelled by random variables X and Y.

AIM: Given a measurement Y = y approximate the conditional (posterior)

distribution
Pxiy(x|Y =y)
and sample from it.
y - X{, ..., XN
Fay(x1Y=y)
=  sampler =
Xmean XsD
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Bayesian formulation: challenges

» Posterior sampling techniques, such as MCMC, are prohibitively expensive
when N is large.

» Characterization of priors for complex data
Examples of prior data snapshots for x:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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Deep neural network

A neural network is a parametrized mapping
NNg : QX — Qy
typically formed by alternating composition

NNp := .AS,L:F:) opoA(eLL) opo AgLL__l) o---0po A(911)

where
6 = {6k}k_1 — trainable weights and biases of the network
Ag;) — parametrized affine transformation
p — non-linear activation function
Usage:

» Let x and y are related in some manner, say y = f(x).
» We are only given S = {(x;, y/)} ;.
» NNp can be used to learn f.
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Deep neural network

Consider a suitable measure
1 X Qy x Qe x Qy = R
s.t. u(x,y, x, NNg(x)) is the error/discrepancy between (x,y) € S and (x, y).
=7
Define the loss/objective function
ne) = N;“ Xi, ¥i, Xi, NNo(x;))

Solve the non-convex optimization problem
= arg minl1(0)
]
Then NNy~ =~ f
Also need to tune network hyper-parameters:

e Width e Depth (L) e Activation function p e Optimizer
e Loss function e Dataset
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Conditional GANs

» Learning distributions conditioned on another field.
» Comprises two neural networks, g and d.
» Flipping role of x and y for inverse problems.

2 &

00 (00

Generator Critic
Generator network: Critic network:
> g:Q; xQy — Q. > d: Qe xQy >R
» Latent variable z ~ Pz, N, < Nj. » d(x,y) large for real x, small
> (X,y) ~ Pxy otherwise.
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Conditional GANs

» Objective function

Ng.d)=  E, [dxy)-dgzy)y)]
z~Pz

» g and d determined (with constraint ||d||Lp < 1) through

(g",d") = argmin arg maxl(g, d)
g d

» Adler et al. (2018) proved that the minmax problem is equivalent to
g"(..y) = argminWi(Pxy, 94 (., ¥)Pz) giveny ~ py
g
where W; is the Wasserstein-1 distance.
» Convergence in W, implies weak convergence

E (0] = 5 [Kg )], Ve Col@).

XNPX‘Y

= conditional statistics converge!
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Posterior sampling using cGANs

Steps:
» Acquire samples Sx = {xi, ..., xn}, where x; ~ PY™".
» Use forward map F to generate paired dataset

S ={(x1,¥1),....,(xn,yn)} where y,= F(xn)+ noise.

» TrainacGANon S
» Sample using g* for a new test measurement y
» Evaluate statistics using Monte Carlo

y

— —

/ Xmean

Latent variable
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Solving the inverse heat conduction equation

Consider the PDE

WS g (w(s)Tus.) =f(s). ¥ (s.1)€ (0,1)% x (0, T]

ot
u(€,0) = w(s), Vse(0,1)?
u(€, t) =0, vV sed0,1)?x(0,T]

» Xx: discrete initial temperature field.
» y: noisy discrete final temperature field.
» : Finite difference solver for the PDE.
» We will assume a constant  and f.
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Inferring initial condition: parametric prior

Assuming a x to given by a rectangular inclusion and Ny = N, = 28 x 28 = 784
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Training samples:
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Inferring initial condition: parametric prior

Testing trained cGAN (statistics with 800 z samples)
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Inferring initial condition: non-parametric prior

Assuming a x to given by MNIST handwritten digits and Ny = N, = 28 x 28 = 784
Training samples:

(clean)

- ‘AOﬁ ‘ » ‘ x ‘
X ‘ . ‘(cean) ‘ . ] . (clean)
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Inferring initial condition: non-parametric prior

Testing trained cGAN (statistics with 800 z samples)
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Generalization

Generalization: Network trained on Set A gives good predictions on another
distinct Set B, possibility sampled from a different distribution.

We can prove' the following: Assume
» The true (regularized) inverse map F~' is spatially local.
» Set A and Set B contain samples with similar local spatial features.
» A cGAN train on Set A, and is also spatially local.

Then the cGAN can generalize well to Set B.

— dependence ”

X Y

1: The efficacy and generalizability of conditional GANSs for posterior inference in physics-based inverse
problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.
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Generalization

cGAN trained on MNIST, tested on notMNIST
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Conclusion

» What do we gain?
> Ability to represent and encode complex prior data.

» Dimension reduction since Ny < Nyx.

> Sampling from cGAN is quick and easy.
» Generalizability — training on smaller dataset.

» Algorithm has been tested for many other physic-based applications.
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