Bayesian inference using generative adversarial networks

Deep Ray Department of Aerospace & Mechanical Engineering

with Dhruv V. Patel, Harisankar Ramaswamy & Assad A. Oberai

Email: deepray@usc.edu Website: deepray.github.io

87th Annual Conference of the IMS December 7, 2021

School of Engineering

- 1. Ingredients
- 2. GANs as priors
- 3. GANs as posterior
- 4. Conclusions

1. Ingredients

2. GANs as priors

3. GANs as posterior

4. Conclusions

Consider the forward/direct map

$$\boldsymbol{f}:\Omega_X\subset\mathbb{R}^{N_X} o\Omega_Y\subset\mathbb{R}^{N_Y}$$

Task: Given a noisy measurement/output $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \eta$ with $\eta \sim P_{\eta}$, infer \mathbf{x} .

Example: Consider the PDE for temperature *u*

$$egin{aligned} -
abla \cdot (\kappa
abla u) &= b(m{\xi}), & orall \, m{\xi} \in \Omega \subset \mathbb{R}^2 \ u(m{\xi}) &= 0, & orall \, m{\xi} \in \partial \Omega \end{aligned}$$

Problem setup:

- Measurement y, noisy temperature field u on a 2D grid.
- Infer x, nodal values of conductivity κ.
- ▶ Non-linear forward map *f* solves the PDE (FEM solver).

Consider the forward/direct map

$$\boldsymbol{f}:\Omega_X\subset\mathbb{R}^{N_X}\to\Omega_Y\subset\mathbb{R}^{N_Y}$$

Task: Given a noisy measurement/output $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \eta$ with $\eta \sim P_{\eta}$, infer \mathbf{x} .

Bayesian approach: Model x and y using random variables

$$\mathcal{P}_X^{\mathsf{post}}(m{x}|m{y}) = rac{\mathcal{P}_Y^{\mathsf{like}}(m{y}|m{x})\mathcal{P}_X^{\mathsf{prior}}(m{x})}{\mathcal{P}_Y(m{y})} \propto \mathcal{P}_\eta(m{y} - m{f}(m{x}))\mathcal{P}_X^{\mathsf{prior}}(m{x})$$

Main steps

- Construct P_X^{prior} based on prior data or constraints.
- ► Given y, use Markov Chain Monte Carlo (MCMC) to construct a Markov chain whose stationary distribution is P_X^{post}.
- For the chain $\{x_1, x_2, ..., x_N\}$, evaluate empirical statistics

$$\mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{P}_{\chi}^{\text{post}}} [\phi(\boldsymbol{x})] \approx \frac{1}{N} \sum_{i=1}^{N} \phi(\boldsymbol{x}_i).$$

Bayesian formulation: challenges

- MCMC is prohibitively expensive when N_x is large.
- Characterization of priors for complex data.

Typical Gaussian prior $P_X^{\text{prior}}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{|\mathbf{x}|^2}{2\sigma^2}\right)$

However, prior knowledge may be samples like:

Microstructure profile for κ

Representing this data in the form of a prior is hard!

Bayesian formulation: challenges

- MCMC is prohibitively expensive when N_x is large.
- Characterization of priors for complex data.

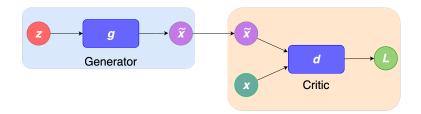
Typical Gaussian prior $P_X^{\text{prior}}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{|\mathbf{x}|^2}{2\sigma^2}\right)$

However, prior knowledge may be samples like:

Microstructure profile for κ

Representing this data in the form of a prior is hard!

Overcome using Generative Adversarial Networks Designed by Goodfellow et al. (2014) to learn and sample from a target P_X .



Generator network:

- ► Generates fake samples of *x*
- Latent variable $\boldsymbol{z} \in \Omega_Z \subset \mathbb{R}^{N_z}, N_z \ll N_x$.
- $\blacktriangleright \quad \boldsymbol{g}: \Omega_Z \to \Omega_X.$
- $z \sim P_Z$ simple distribution.

Critic network:

- Distinguishes fake samples from real
- ► $d: \Omega_X \to \mathbb{R}$.
- $\boldsymbol{x} \sim P_X$.
- $d(\mathbf{x})$ large for $\mathbf{x} \sim P_X$, small otherwise.

Proposed by Arjovsky et al. (2017)

Objective function

$$L(\boldsymbol{g}, \boldsymbol{d}) = \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{X}}} [\boldsymbol{d}(\boldsymbol{x})] - \mathop{\mathbb{E}}_{\boldsymbol{z} \sim \mathcal{P}_{\boldsymbol{Z}}} [\boldsymbol{d}(\boldsymbol{g}(\boldsymbol{z}))]$$

▶ g and d determined (with constraint $||d||_{Lip} \le 1$) through

$$(\boldsymbol{g}^*, \boldsymbol{d}^*) = rgmax_d rgmin_d \mathcal{L}(\boldsymbol{g}, \boldsymbol{d})$$

► For the optimal generator **g**^{*}, using Kantorovich-Rubinstein dual characterization

$$oldsymbol{g}^* = rgmin_{oldsymbol{g}} W_1(P_X, oldsymbol{g}_{\#} P_Z)$$

► Convergence in W₁ implies weak convergence

$$\mathop{\mathbb{E}}_{\boldsymbol{x}\sim P_{\boldsymbol{X}}}\left[\phi(\boldsymbol{x})\right] = \mathop{\mathbb{E}}_{\boldsymbol{z}\sim P_{\boldsymbol{Z}}}\left[\phi(\boldsymbol{g}^{*}(\boldsymbol{z}))\right], \quad \forall \ \phi \in C_{b}(\Omega_{\boldsymbol{X}}).$$

1. Ingredients

2. GANs as priors

3. GANs as posterior

4. Conclusions

Given:

- A set $S = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$, where $\mathbf{x}_i \sim \mathbf{P}_X^{\text{prior}}$.
- The direct map f(x) (exactly or approximately).
- The noise distribution P_{η}
- A noisy measurement y

Goal: Determine P_{χ}^{post} and evaluate statistics wrt it.

Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors, by Patel, Ray & Oberai, arXiv:2107.02926, 2021

GANs as priors

Step 1: Using S, train a WGAN with generator g^* .

Assume:

▶ g* is the optimal generator satisfying the weak relation

$$\mathbb{E}_{\substack{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{X}}^{\text{prior}}}}[\phi(\boldsymbol{x})] = \mathbb{E}_{\substack{\boldsymbol{z} \sim \mathcal{P}_{\boldsymbol{Z}}}}[\phi(\boldsymbol{g}^{*}(\boldsymbol{z}))], \quad \forall \ \phi \in C_{b}(\Omega_{\boldsymbol{X}}).$$

• **f** and P_{η} are continuous.

Theorem

If the above assumptions hold, then we get a weak expression for P_X^{post}

$$\mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{X}}^{\mathsf{post}}} [\phi(\boldsymbol{x})] = \mathop{\mathbb{E}}_{\boldsymbol{z} \sim \mathcal{P}_{\boldsymbol{Z}}^{\mathsf{post}}} [\phi(\boldsymbol{g}^{*}(\boldsymbol{z}))], \quad \forall \ \phi \in C_{b}(\Omega_{\boldsymbol{X}}),$$

where

$$P_Z^{\text{post}}(\boldsymbol{z}|\boldsymbol{y}) \propto P_\eta(\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{g}^*(\boldsymbol{z})))P_Z(\boldsymbol{z}).$$

Sampling **x** from $P_x^{\text{post}} \equiv \text{sampling } \mathbf{z}$ from P_z^{post} and evaluating $\mathbf{x} = \mathbf{g}^*(\mathbf{z})$.

Step 2: Generate a chain $\{z_1, ..., z_n\}$ using MCMC.

Step 3: Evaluate statistics using Monte Carlo

$$\mathop{\mathbb{E}}_{\boldsymbol{x} \sim P_{\boldsymbol{X}}^{\text{post}}} [\phi(\boldsymbol{x})] \approx \frac{1}{n} \sum_{i=1}^{n} \phi(\boldsymbol{g}^{*}(\boldsymbol{z}_{i}))).$$

What do we gain?

- Ability to represent complex prior, if S is available.
- $N_z \ll N_x$ makes MCMC computationally tractable.

Given u, find κ satisfying

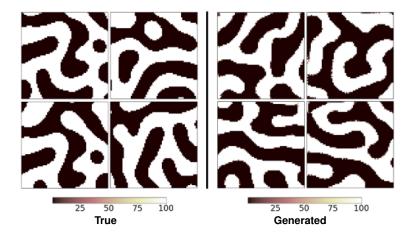
$$egin{aligned} & -
abla \cdot (\kappa
abla u) = b(m{\xi}), & orall \, m{\xi} \in \Omega \subset \mathbb{R}^2 \ & u(m{\xi}) = 0, & orall \, m{\xi} \in \partial \Omega \end{aligned}$$

Problem setup:

- Measurement y, noisy temperature field u on a 2D grid.
- lnfer \boldsymbol{x} , nodal values of conductivity κ .
- ▶ Non-linear forward map *f* solves the PDE (FEM solver).
- Noise is assumed to be Gaussian iid.

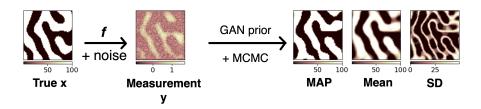
Inferring thermal conductivity ($b(\xi) = 10^3$)

Microstructure profile given by Cahn-Hilliard ($N_x = 4096, N_Z = 100$)



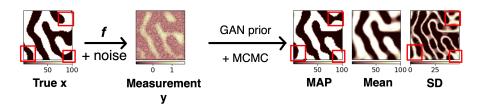
Inferring thermal conductivity ($b(\xi) = 10^3$)

Solving the inference problem on a test sample

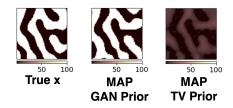


Inferring thermal conductivity ($b(\xi) = 10^3$)

Solving the inference problem on a test sample



Solving the inference problem on a test sample

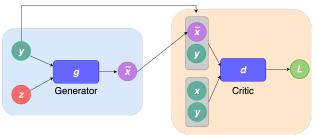


1. Ingredients

2. GANs as priors

- 3. GANs as posterior
- 4. Conclusions

Learning distributions conditioned on another field. Based on work by Adler et al. (2018) & Almahairi et al. (2018).



Generator network:

- $\blacktriangleright \boldsymbol{g}: \Omega_Z \times \Omega_Y \to \Omega_X.$
- $\blacktriangleright \mathbf{z} \sim P_Z, N_z \ll N_x.$
- $\blacktriangleright (\boldsymbol{x}, \boldsymbol{y}) \sim P_{XY}$

Critic network:

- $\blacktriangleright d: \Omega_X \times \Omega_Y \to \mathbb{R}.$
- d(x, y) large for real x, small otherwise.

Fix $\textbf{\textit{y}}$, take many sample of $\textbf{\textit{z}} ightarrow$ many samples of $\textbf{\textit{x}}$

Objective function

$$L(\boldsymbol{g}, \boldsymbol{d}) = \underset{\boldsymbol{z} \sim P_Z}{\mathbb{E}} \left[d(\boldsymbol{x}, \boldsymbol{y}) - d(\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{y}), \boldsymbol{y}) \right]$$

▶ g and d determined (with constraint $||d||_{Lip} \leq 1$) through

$$(\boldsymbol{g}^*, \boldsymbol{d}^*) = rgmax_d rgmin_d \mathcal{L}(\boldsymbol{g}, \boldsymbol{d})$$

$$oldsymbol{g}^*(.,oldsymbol{y}) = rgmin_{oldsymbol{g}} W_1(P_{X|Y},oldsymbol{g}_{\#}(.,oldsymbol{y})P_Z)$$

▶ Convergence in W₁ implies weak convergence

$$\mathop{\mathbb{E}}_{\boldsymbol{x}\sim P_{X|Y}}\left[\ell(\boldsymbol{x})\right] = \mathop{\mathbb{E}}_{\boldsymbol{z}\sim P_{Z}}\left[\ell(\boldsymbol{g}^{*}(\boldsymbol{z},\boldsymbol{y}))\right], \quad \forall \ \ell \in C_{b}(\Omega_{X}).$$

Given:

- ▶ A set $S = \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\}$, where $\mathbf{x}_i \sim P_X^{\text{prior}}$ and $\mathbf{y}_i \sim P_{Y|X}$.
- A noisy measurement y

Goal: Determine P_{χ}^{post} and evaluate statistics wrt it.

Step 1: Using S, train a WGAN with generator $g^*(z, y)$.

Using Bayes and weak convergence of conditional WGAN for a given y

 $\mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{P}_{X}^{\text{post}}} \left[\ell(\boldsymbol{x}) \right] = \mathop{\mathbb{E}}_{\boldsymbol{z} \sim \mathcal{P}_{Z}} \left[\ell(\boldsymbol{g}^{*}(\boldsymbol{z}, \boldsymbol{y})) \right], \quad \forall \ \ell \in C_{b}(\Omega_{X})$

Sampling **x** from $P_X^{\text{post}} \equiv \text{sampling } \mathbf{z}$ from P_Z and evaluating $\mathbf{x} = \mathbf{g}^*(\mathbf{z}, \mathbf{y})$. Step 2: Query \mathbf{g}^* and evaluate statistics using Monte Carlo

$$\mathop{\mathbb{E}}_{\boldsymbol{x} \sim P_{X}^{\text{post}}} \left[\ell(\boldsymbol{x}) \right] \approx \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{g}^{*}(\boldsymbol{z}_{i}, \boldsymbol{y}))), \quad \boldsymbol{z}_{i} \sim P_{Z}.$$

What do we gain?

- Ability to represent complex prior, if S is available.
- $\blacktriangleright N_z \ll N_x.$
- Sampling from a GAN is very simple.

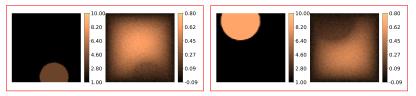
Architecture of generator:

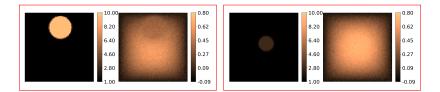
- ▶ U-net structure: control the spatial locality of g(z, .) map.
- Conditional instance normalization: inject randomness at multiple scales.

Efficient posterior inference & generalization in physics-based Bayesian inference with conditional GANs, by Ray, Patel, Ramaswamy & Oberai; NeurIPS 2021 Deep Inverse Workshop, 2021.

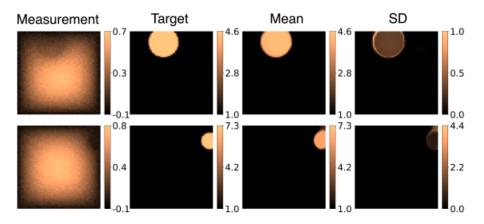
Assume κ is given by circular inclusions ($N_x = N_y = 4096, N_Z = 50$)

Training sample pairs: (x, y), $y = f(x) + \eta$

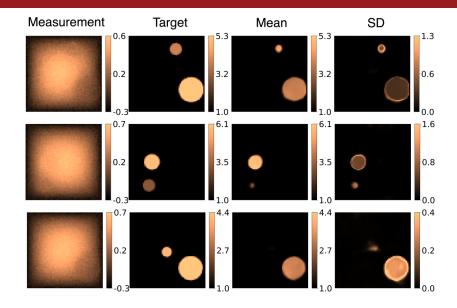




Solving the inference problem with test y



Inferring thermal conductivity ($b(\xi) = 10$) on O.O.D. samples



- ▶ GANs as priors and posterior in physics-based Bayesian inference.
- Ability to capture complex prior information.
- Dimensionality reduction using latent space.
- ► Generate point estimates to quantify uncertainty in inferred field.
- ► Hints at generalizability using cGAN with special architecture.
- Many more applications ...

Supported by: Army Research Office, Airbus Institute for Engineering Research (AIER, USC), Center for Advanced Research Computing (CARC, USC).

References

J. B. Keller. Inverse Problems. The American Mathematical Monthly, 83:107–118, 1976.
I. J. Goodfellow, J. PAbadie, M. Mirza, B. Xu, D. WFarley, S. Ozair, A. Courville, Y. Bengio Generative Adversarial Networks. <i>Advances in Neural Information Processing Systems</i> , 2672–2680, 2014.
M. Arjovsky, S. Chintala, L. Bottou Wasserstein Generative Adversarial Networks. <i>PMLR</i> , 70:214-223, 2017
T. Karras, T. Aila, S. Laine, J. Lehtinen Progressive Growing of GANs for Improved Quality, Stability, and Variation. <i>arXiv</i> :1710.10196, 2018
J. Adler, O. Öktem Deep Bayesian Inversion. <i>arXiv</i> :1811.05910, 2018

A. Almahairi, S. Rajeswar, A. Sordoni, P. Bachman, A. Courville Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data.

PMLR, 80:195-204, 2018

- D. Patel, A. A. Oberai GAN-based Priors for Uncertainty Quantification arXiv:2003.12597, 2020

D. Patel, D. Ray, A. A. Oberai

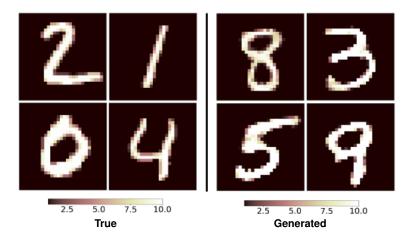
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors

arXiv:2107.02926, 2021

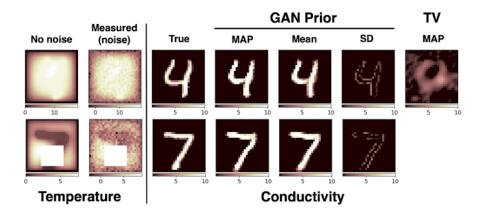
	GAN as prior	GAN as posterior
Data generation	$oldsymbol{x} \sim oldsymbol{\mathcal{P}}_X^{ extsf{prior}}$	$oldsymbol{x} \sim oldsymbol{\mathcal{P}}_X^{prior}, oldsymbol{y} \sim oldsymbol{\mathcal{P}}_{Y X}$
Forward model	Need f and $\frac{\partial f}{\partial x}$	Possibly need <i>f</i> to generate data
Sampling	GAN and MCMC	Only GAN
Generalizability	Hard to control	Better control

Inferring thermal conductivity (MNIST)

Assume that κ is given by MNIST digits ($N_x = 784, N_Z = 100$)



Solving the inference problem on test data



Find the tissue density $\rho:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ given the line Radon transforms

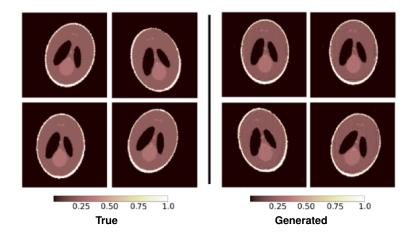
$$\mathcal{R}_{t,\psi} = \int_{\gamma_{t,\psi}}
ho \mathsf{d}\gamma$$

where $\gamma_{t,\psi}$ is the line at an angle ψ and at a signed-distance of *t* from the center of Ω .

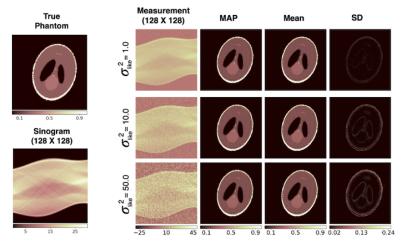
Problem setup:

- lnfer \boldsymbol{x} , nodal values of ρ .
- Linear forward map *f*, Radon transform.
- ▶ Measurement **y**, noisy Radon transforms on a set of lines.
- Noise is assumed to be Gaussian iid.

 ρ given by perturbed Shepp-Logan phantoms ($N_x = 16384, N_Z = 100$)



Solving the inference problem



Given $u(\xi, T)$, find u_0

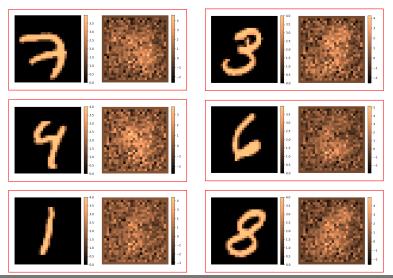
$$\begin{aligned} \frac{\partial u}{\partial t} - \nabla \cdot (2\nabla u) &= 0, \qquad \forall \ (\boldsymbol{\xi}, t) \in \Omega \times (0, 1) \\ u(\boldsymbol{\xi}, 0) &= u_0(\boldsymbol{\xi}), \qquad \forall \ \boldsymbol{\xi} \in \Omega \\ u(\boldsymbol{\xi}, t) &= 0, \qquad \forall \ (\boldsymbol{\xi}, t) \in \partial\Omega \times (0, 1) \end{aligned}$$

Severely ill-posed problem!

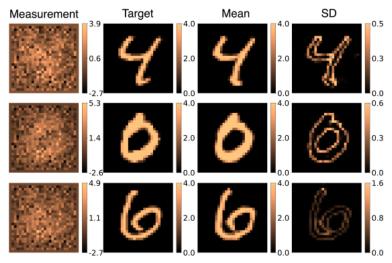
Problem setup:

- lnfer \boldsymbol{x} , initial temperature field u on a 2D grid.
- ▶ Measurement **y**, noisy temperature field *u* on a 2D grid.
- Generate S by sampling $\mathbf{x} \sim P_X^{\text{prior}}$ and evaluating $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \eta$.
- ▶ Train WGAN on S

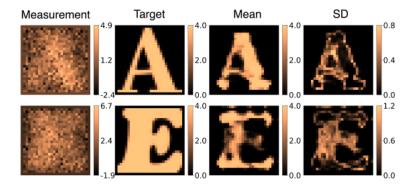
Assume u_0 is given by MNIST ($N_x = N_y = 784, N_Z = 100$)



Solving the inference problem



Solving the inference problem



Evaluate average gradient magnitude for the k-th pixel of \boldsymbol{x}

$$\overline{\operatorname{grad}}_{k} = \frac{1}{1000} \sum_{i=1}^{100} \sum_{j=1}^{10} \left| \frac{\partial \boldsymbol{g}}{\partial \boldsymbol{y}} (\boldsymbol{z}^{(j)}, \boldsymbol{y}^{(i)}) \right|, \quad \boldsymbol{y}^{(i)} \sim P_{Y}, \quad \boldsymbol{z}^{(j)} \sim P_{Z}, \quad 1 \le k \le 4096.$$

