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Bayesian approach for solving inverse problems

Consider the forward/direct map

f : ΩX ⊂ RNX → ΩY ⊂ RNY

Task: Given a noisy measurement/output y = f (x) + η with η ∼ Pη, infer x .

Example: Consider the PDE for temperature u

−∇ · (κ∇u) = b(ξ), ∀ ξ ∈ Ω ⊂ R2

u(ξ) = 0, ∀ ξ ∈ ∂Ω

Problem setup:

I Measurement y , noisy temperature field u on a 2D grid.

I Infer x , nodal values of conductivity κ.

I Non-linear forward map f solves the PDE (FEM solver).
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Bayesian approach for solving inverse problems

Consider the forward/direct map

f : ΩX ⊂ RNX → ΩY ⊂ RNY

Task: Given a noisy measurement/output y = f (x) + η with η ∼ Pη, infer x .

Bayesian approach: Model x and y using random variables

Ppost
X (x |y) =

P like
Y (y |x)Pprior

X (x)

PY (y)
∝ Pη(y − f (x))Pprior

X (x)

Main steps
I Construct Pprior

X based on prior data or constraints.
I Given y , use Markov Chain Monte Carlo (MCMC) to construct a Markov chain

whose stationary distribution is Ppost
X .

I For the chain {x1, x2, ..., xN}, evaluate empirical statistics

E
x∼Ppost

X

[φ(x)] ≈ 1
N

N∑
i=1

φ(xi ).
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Bayesian formulation: challenges

I MCMC is prohibitively expensive when Nx is large.

I Characterization of priors for complex data.

Typical Gaussian prior Pprior
X (x) = 1√

2πσ
exp

(
− |x|

2

2σ2

)

} Overcome using
Generative Adversarial

Networks

However, prior knowledge may be samples like:

Microstructure profile for κ

Representing this data in the form of a prior is hard!

D. Ray Bayesian inference using generative adversarial networks 4



Bayesian formulation: challenges

I MCMC is prohibitively expensive when Nx is large.

I Characterization of priors for complex data.

Typical Gaussian prior Pprior
X (x) = 1√

2πσ
exp

(
− |x|

2

2σ2

) } Overcome using
Generative Adversarial

Networks

However, prior knowledge may be samples like:

Microstructure profile for κ

Representing this data in the form of a prior is hard!

D. Ray Bayesian inference using generative adversarial networks 4



Generative adversarial network (GAN)

Designed by Goodfellow et al. (2014) to learn and sample from a target PX .

Generator network:
I Generates fake samples of x

I Latent variable z ∈ ΩZ ⊂ RNz , Nz � Nx .

I g : ΩZ → ΩX .

I z ∼ PZ simple distribution.

Critic network:
I Distinguishes fake samples from real

I d : ΩX → R.

I x ∼ PX .

I d(x) large for x ∼ PX , small otherwise.
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Wasserstein GAN

Proposed by Arjovsky et al. (2017)

I Objective function

L(g, d) = E
x∼PX

[d(x)]− E
z∼PZ

[d(g(z))]

I g and d determined (with constraint ‖d‖Lip ≤ 1) through

(g∗, d∗) = arg max
d

arg min
g

L(g, d)

I For the optimal generator g∗, using Kantorovich-Rubinstein dual
characterization

g∗ = arg min
g

W1(PX ,g#PZ )

I Convergence in W1 implies weak convergence

E
x∼PX

[φ(x)] = E
z∼PZ

[φ(g∗(z))] , ∀ φ ∈ Cb(ΩX ).
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GANs as priors

Given:

I A set S = {x1, ..., xn}, where xi ∼ Pprior
X .

I The direct map f (x) (exactly or approximately).

I The noise distribution Pη
I A noisy measurement y

Goal: Determine Ppost
X and evaluate statistics wrt it.

Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors, by Patel, Ray &

Oberai, arXiv:2107.02926, 2021
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GANs as priors

Step 1: Using S, train a WGAN with generator g∗.

Assume:
I g∗ is the optimal generator satisfying the weak relation

E
x∼Pprior

X

[φ(x)] = E
z∼PZ

[φ(g∗(z))] , ∀ φ ∈ Cb(ΩX ).

I f and Pη are continuous.

Theorem

If the above assumptions hold, then we get a weak expression for Ppost
X

E
x∼Ppost

X

[φ(x)] = E
z∼Ppost

Z

[φ(g∗(z))] , ∀ φ ∈ Cb(ΩX ),

where
Ppost

Z (z|y) ∝ Pη(y − f (g∗(z)))PZ (z).

Sampling x from Ppost
X ≡ sampling z from Ppost

Z and evaluating x = g∗(z).
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GANs as priors

Step 2: Generate a chain {z1, ..., zn} using MCMC.

Step 3: Evaluate statistics using Monte Carlo

E
x∼Ppost

X

[φ(x)] ≈ 1
n

n∑
i=1

φ(g∗(zi ))).

What do we gain?

I Ability to represent complex prior, if S is available.

I Nz � Nx makes MCMC computationally tractable.
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Inferring thermal conductivity

Given u, find κ satisfying

−∇ · (κ∇u) = b(ξ), ∀ ξ ∈ Ω ⊂ R2

u(ξ) = 0, ∀ ξ ∈ ∂Ω

Problem setup:

I Measurement y , noisy temperature field u on a 2D grid.

I Infer x , nodal values of conductivity κ.

I Non-linear forward map f solves the PDE (FEM solver).

I Noise is assumed to be Gaussian iid.
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Inferring thermal conductivity (b(ξ) = 103)

Microstructure profile given by Cahn-Hilliard (Nx = 4096,NZ = 100)

True Generated
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Inferring thermal conductivity (b(ξ) = 103)

Solving the inference problem on a test sample
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Conditional WGANs

Learning distributions conditioned on another field. Based on work by Adler et al.
(2018) & Almahairi et al. (2018).

Generator network:

I g : ΩZ × ΩY → ΩX .

I z ∼ PZ , Nz � Nx .

I (x , y) ∼ PXY

Critic network:

I d : ΩX × ΩY → R.

I d(x , y) large for real x , small
otherwise.

Fix y , take many sample of z → many samples of x
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Conditional WGANs

I Objective function

L(g, d) = E
(x,y)∼PXY

z∼PZ

[
d(x , y)− d

(
g(z, y), y

)]
I g and d determined (with constraint ‖d‖Lip ≤ 1) through

(g∗, d∗) = arg max
d

arg min
g

L(g, d)

I For the optimal generator g∗

g∗(., y) = arg min
g

W1(PX |Y ,g#(., y)PZ )

I Convergence in W1 implies weak convergence

E
x∼PX|Y

[`(x)] = E
z∼PZ

[`(g∗(z, y))] , ∀ ` ∈ Cb(ΩX ).
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GANs as posterior

Given:
I A set S = {(x1, y1), ..., (xn, yn)}, where xi ∼ Pprior

X and yi ∼ PY |X .

I A noisy measurement y

Goal: Determine Ppost
X and evaluate statistics wrt it.

Step 1: Using S, train a WGAN with generator g∗(z, y).

Using Bayes and weak convergence of conditional WGAN for a given y

E
x∼Ppost

X

[`(x)] = E
z∼PZ

[`(g∗(z, y))] , ∀ ` ∈ Cb(ΩX )

Sampling x from Ppost
X ≡ sampling z from PZ and evaluating x = g∗(z, y).

Step 2: Query g∗ and evaluate statistics using Monte Carlo

E
x∼Ppost

X

[`(x)] ≈ 1
n

n∑
i=1

`(g∗(zi , y))), zi ∼ PZ .
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GANs as posterior

What do we gain?

I Ability to represent complex prior, if S is available.

I Nz � Nx .

I Sampling from a GAN is very simple.

Architecture of generator:

I U-net structure: control the spatial locality of g(z, .) map.

I Conditional instance normalization: inject randomness at multiple scales.

Efficient posterior inference & generalization in physics-based Bayesian inference with conditional GANs,

by Ray, Patel, Ramaswamy & Oberai; NeurIPS 2021 Deep Inverse Workshop, 2021.
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Inferring thermal conductivity (b(ξ) = 10)

Assume κ is given by circular inclusions (Nx = Ny = 4096,NZ = 50)

Training sample pairs: (x , y), y = f (x) + η

D. Ray Bayesian inference using generative adversarial networks 21



Inferring thermal conductivity (b(ξ) = 10)

Solving the inference problem with test y
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Inferring thermal conductivity (b(ξ) = 10) on O.O.D. samples
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Conclusions

I GANs as priors and posterior in physics-based Bayesian inference.

I Ability to capture complex prior information.

I Dimensionality reduction using latent space.

I Generate point estimates to quantify uncertainty in inferred field.

I Hints at generalizability using cGAN with special architecture.

I Many more applications ...

Supported by: Army Research Office, Airbus Institute for Engineering Research
(AIER, USC), Center for Advanced Research Computing (CARC, USC).
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Comparing the two approaches

GAN as prior GAN as posterior

Data generation x ∼ Pprior
X x ∼ Pprior

X , y ∼ PY |X

Forward model Need f and ∂f
∂x Possibly need f to generate data

Sampling GAN and MCMC Only GAN

Generalizability Hard to control Better control
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Inferring thermal conductivity (MNIST)

Assume that κ is given by MNIST digits (Nx = 784,NZ = 100)

True Generated
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Inferring thermal conductivity (MNIST)

Solving the inference problem on test data
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Inverse Radon transform (CT)

Find the tissue density ρ : Ω ⊂ R2 → R given the line Radon transforms

Rt,ψ =

∫
γt,ψ

ρdγ

where γt,ψ is the line at an angle ψ and at a signed-distance of t from the center of
Ω.

Problem setup:

I Infer x , nodal values of ρ.

I Linear forward map f , Radon transform.

I Measurement y , noisy Radon transforms on a set of lines.

I Noise is assumed to be Gaussian iid.
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Inverse Radon transform (CT)

ρ given by perturbed Shepp-Logan phantoms (Nx = 16384,NZ = 100)

True Generated
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Inverse Radon transform (CT)

Solving the inference problem
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Inferring the initial condition

Given u(ξ,T ), find u0

∂u
∂t
−∇ · (2∇u) = 0, ∀ (ξ, t) ∈ Ω× (0, 1)

u(ξ, 0) = u0(ξ), ∀ ξ ∈ Ω

u(ξ, t) = 0, ∀ (ξ, t) ∈ ∂Ω× (0, 1)

Severely ill-posed problem!

Problem setup:

I Infer x , initial temperature field u on a 2D grid.

I Measurement y , noisy temperature field u on a 2D grid.

I Generate S by sampling x ∼ Pprior
X and evaluating y = f (x) + η.

I Train WGAN on S
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Inferring the initial condition

Assume u0 is given by MNIST (Nx = Ny = 784,NZ = 100)
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Inferring the initial condition

Solving the inference problem
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Inferring the initial condition

Solving the inference problem
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Local nature of learned inverse

Evaluate average gradient magnitude for the k -th pixel of x

gradk =
1

1000

100∑
i=1

10∑
j=1

∣∣∣∣∂g
∂y

(z (j), y (i))

∣∣∣∣ , y (i) ∼ PY , z (j) ∼ PZ , 1 ≤ k ≤ 4096.
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