Deep learning aided Bayesian inference

Deep Ray Department of Aerospace & Mechanical Engineering University of Southern California

Email: deepray@usc.edu Website: deepray.github.io

REU Exposure Seminar University of Maryland, July 27, 2022

School of Engineering

- Probability, Monte Carlo and Bayes theorem
- ► Forward, inverse problems and the Bayesian framework
- Neural networks
- Conditional generative adversarial networks (cGANs)
- ► Applications:
 - Academic example: heat equation
 - Real life example: MRI brain extraction

- ► X is an \mathbb{R} -valued random variable with distribution P_X , e.g. uniform $\mathcal{U}([a, b])$, Gaussian $N(\mu, \sigma^2)$.
- **Expectations:** For a function $f : \mathbb{R} \to \mathbb{R}$, the expectation of f(X) is

$$\mathbb{E}_{X \sim P_X} \left[f(X) \right] = \int_{\mathbb{R}} f(x) P_X(x) \mathsf{d}x.$$

For f(x) = x, we get the mean

$$\mu_X := \mathop{\mathbb{E}}_{X \sim P_X} \left[X \right] = \int_{\mathbb{R}} x P_X(x) \mathrm{d}x.$$

For $f(x) = (x - \mu_X)^2$, we get the variance

$$Var(X) := \mathop{\mathbb{E}}_{X \sim P_X} \left[(X - \mu_X)^2 \right] = \int_{\mathbb{R}} (x - \mu_X)^2 P_X(x) \mathsf{d}x.$$

The standard deviation is $SD(X) := \sqrt{Var(X)}$.

X = (X₁, X₂) is an ℝ²-valued (2 dimensional) random variable with the joint distribution P_X = P_{X1X2}, e.g. Gaussian N(µ, Σ).

Expectations: For a function $f : \mathbb{R}^2 \to \mathbb{R}$

$$\mathop{\mathbb{E}}_{\boldsymbol{X} \sim P_{\boldsymbol{X}}} \left[f(\boldsymbol{X}) \right] = \int f(\boldsymbol{x}) P_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}.$$

For a a vector-valued function $\boldsymbol{f}:\mathbb{R}^2 \to \mathbb{R}^k$ with $\boldsymbol{f}(\boldsymbol{x}) = [f_1(\boldsymbol{x}), \cdots, f_k(\boldsymbol{x})],$

$$\mathbb{E}_{\boldsymbol{X} \sim P_{\boldsymbol{X}}} \left[\boldsymbol{f}(\boldsymbol{X}) \right] = \left[\mathbb{E}_{\boldsymbol{X} \sim P_{\boldsymbol{X}}} \left[f_1(\boldsymbol{X}) \right], \cdots, \mathbb{E}_{\boldsymbol{X} \sim P_{\boldsymbol{X}}} \left[f_k(\boldsymbol{X}) \right] \right] \in \mathbb{R}^k.$$

In particular, f(x) = x gives 2-dimensional mean

$$\mu_{\boldsymbol{X}} := \mathop{\mathbb{E}}_{\boldsymbol{X} \sim P_{\boldsymbol{X}}} [\boldsymbol{X}] = [\mu_1, \mu_2].$$

The covariance matrix $\Sigma_{\boldsymbol{X}} \in \mathbb{R}^{2 \times 2}$ is given by

$$\Sigma_{\mathbf{X}} := \begin{bmatrix} Var(X_1) & Cov(X_1, X_2) \\ Cov(X_1, X_2) & Var(X_2) \end{bmatrix}$$

Probability basics

Marginals: The probability distributions of each component

$$P_{X_1}(x_1) = \int_{\mathbb{R}} P_{\mathbf{X}}(x_1, x_2) \mathsf{d}x_2, \quad P_{X_2}(x_2) = \int_{\mathbb{R}} P_{\mathbf{X}}(x_1, x_2) \mathsf{d}x_1.$$

Conditionals: The conditional probability distribution of X_1 given $X_2 = x_2$

$$P_{X_1|X_2}(x_1|x_2) = \frac{P_{X_1X_2}(x_1, x_2)}{P_{X_2}(x_2)}.$$

Similarly, the conditional probability distribution of X_2 given $X_1 = x_1$

$$P_{X_2|X_1}(x_2|x_1) = \frac{P_{X_1X_2}(x_1, x_2)}{P_{X_1}(x_1)}$$

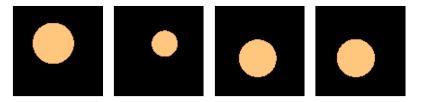
The conditional expectation: given $X_2 = x_2$

$$\mathbb{E}_{X_1 \sim P_{X_1|X_2}} \left[f(X_1) \right] = \int f(x_1) P_{X_1|X_2}(x_1|x_2) \mathsf{d} x_1.$$

Bayes' theorem: Relates both conditionals

$$P_{X_1|X_2}(x_1|x_2) = \frac{P_{X_2|X_1}(x_2|x_1)P_{X_1}(x_1)}{P_{X_2}(x_2)}$$

Let $S = \{x^{(1)}, x^{(2)}, \dots\}$ be a set of images of shape $N \times N$. For example:



- Each image x⁽ⁱ⁾ can be seen as a realization of an N² dimensional random variable X.
- Each pixel is a random variable X_i , for $1 \le i \le N^2$.
- ▶ We can calculate pixelwise mean and standard deviation of pixel intensity.

Monte Carlo (MC)

► Calculating $\underset{\boldsymbol{X} \sim P_{\boldsymbol{X}}}{\mathbb{E}} [f(\boldsymbol{X})] = \int f(\boldsymbol{x}) P_X(\boldsymbol{x}) d\boldsymbol{x}$ may be non-trivial.

Approximate the integral using a suitable **quadrature**.

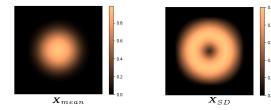
- Monte Carlo is one such strategy:
 - Choose i.i.d. samples $\{x^{(i)}\}_{i=1}^N$
 - Calculate the estimator

$$E_N[f] = \frac{1}{N} \sum_{i=1}^{N} f(\boldsymbol{x}^{(i)}) \approx \underset{\boldsymbol{X} \sim P_{\boldsymbol{X}}}{\mathbb{E}} [f(\boldsymbol{X})]$$

• Error = $\mathcal{O}(\frac{1}{\sqrt{N}})$

Useful when all we have is data

For example, with N = 10,000 random circle image



Consider the phenomena of heat flow through some material.

Modelled using the heat equation:

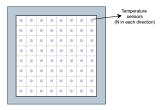
$$\frac{\partial u(\boldsymbol{s},t)}{\partial t} - \kappa \Delta u(\boldsymbol{s},t)) = 0$$

where

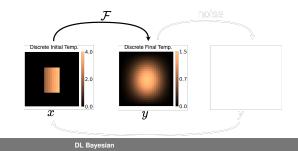
 $u(s,t) \rightarrow$ temperature at location s at time t $u_0(s) \rightarrow$ initial temperature at location s

 $u(s, 0) = u_0(s)$

 $\kappa \rightarrow$ thermal conductivity of material



Forward problem \mathcal{F} : Given $u_0(s)$ at the sensor nodes determine u(s,T)



Consider the phenomena of heat flow through some material.

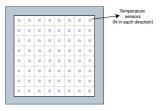
Modelled using the heat equation:

$$\frac{\partial u(\boldsymbol{s},t)}{\partial t} - \kappa \Delta u(\boldsymbol{s},t)) = 0$$

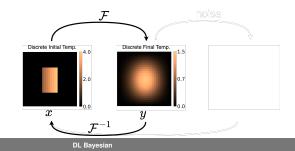
where

 $u(s, t) \rightarrow \text{temperature at location } s \text{ at time } t$ $u_0(s) \rightarrow \text{initial temperature at location } s$ $\kappa \rightarrow \text{thermal conductivity of material}$

 $u(s, 0) = u_0(s)$



Inverse problem \mathcal{F}^{-1} : Given u(s,T) at the sensor nodes infer $u_0(s)$



Consider the phenomena of heat flow through some material.

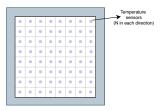
Modelled using the heat equation:

$$\frac{\partial u(\boldsymbol{s},t)}{\partial t} - \kappa \Delta u(\boldsymbol{s},t)) = 0$$

where

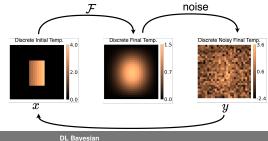
 $u(s, t) \rightarrow$ temperature at location s at time t $u_0(s) \rightarrow \text{initial temperature at location } s$

 $\kappa \rightarrow$ thermal conductivity of material



Inverse problem \mathcal{F}^{-1} : Given noisy u(s,T) infer $u_0(s)$

 $u(s, 0) = u_0(s)$



D. Ray

Challenges with inverse problems:

- Inverse map is not well posed.
- Noisy measurements.
- Need to encode prior knowledge about the inferred field x (e.g. initial temperature).

Uncertainty in inferred field critical for applications with high-stake decisions.

Example: Medical imaging to detect liver lesions

Measurement

Inferred field

Measurement

Safe

Inferred field

Uncertainty (pt-wise SD) [Adler et al., 2018]

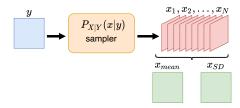
Assume x and y are modelled by random variables X and Y.

AIM: Given a measurement Y = y approximate the conditional distribution

$$P_{\boldsymbol{X}|\boldsymbol{Y}}(\boldsymbol{x}|\boldsymbol{y}) = \frac{P_{\boldsymbol{Y}|\boldsymbol{X}}(\boldsymbol{y}|\boldsymbol{x})P_{\boldsymbol{X}}(\boldsymbol{x})}{P_{\boldsymbol{Y}}(\boldsymbol{y})}$$

 $P_X(x)$: prior distribution $P_Y(y)$: evidence $P_Y|_X(y|x)$: likelihood of observing y given x $P_X|_Y(x|y)$: posterior distribution given y

We want to generate samples:



- Posterior sampling techniques, such as Markov Chain Monte Carlo, are prohibitively expensive when dimension of X is large.
- Characterization of priors for complex data

For example, *x* data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning

A neural network is a parametrized mapping

$$NN_{\theta}: \Omega_x \to \Omega_y$$

typically formed by alternating composition

хз

x₄

$$NN_{\boldsymbol{\theta}} := \rho \circ \mathcal{A}_{\boldsymbol{\theta}_{L+1}}^{(L+1)} \circ \rho \circ \mathcal{A}_{\boldsymbol{\theta}_{L}}^{(L)} \circ \rho \circ \mathcal{A}_{\boldsymbol{\theta}_{L-1}}^{(L-1)} \circ \cdots \circ \rho \circ \mathcal{A}_{\boldsymbol{\theta}_{1}}^{(1)}$$

where

 $\theta = \{\theta_k\}_{k=1}^{L} \longrightarrow \text{ trainable weights and biases of the network}$ $\mathcal{A}_{\theta_k}^{(k)} \longrightarrow \text{ parametrized affine transformation}$ $\rho \longrightarrow \text{ non-linear activation function}$ $\underbrace{\begin{array}{c} z_1 \\ \rho \\ z_2 \\ z_3 \\ \rho \end{array}}_{\mathcal{A}^{(1)}} \underbrace{\begin{array}{c} z_1 \\ z_2 \\ \varphi \\ z_3 \\ \rho \end{array}}_{\mathcal{Y}_3} \underbrace{\begin{array}{c} z_1 \\ y_2 \\ y_3 \\ \varphi \\ y_3 \\ \varphi \end{array}}_{\mathcal{Y}_3}$

z₄ z₅

z₆

Wx + b

 $\theta_1 = \{ \boldsymbol{W}, \boldsymbol{b} \}$

A neural network is a parametrized mapping

$$NN_{\theta}: \Omega_x \to \Omega_y$$

typically formed by alternating composition

$$NN_{\boldsymbol{\theta}} := \rho \circ \mathcal{A}_{\boldsymbol{\theta}_{L+1}}^{(L+1)} \circ \rho \circ \mathcal{A}_{\boldsymbol{\theta}_{L}}^{(L)} \circ \rho \circ \mathcal{A}_{\boldsymbol{\theta}_{L-1}}^{(L-1)} \circ \cdots \circ \rho \circ \mathcal{A}_{\boldsymbol{\theta}_{1}}^{(1)}$$

where

$$\begin{split} \boldsymbol{\theta} &= \{\boldsymbol{\theta}_k\}_{k=1}^L \longrightarrow \text{ trainable weights and biases of the network} \\ \mathcal{A}_{\boldsymbol{\theta}_k}^{(k)} \longrightarrow \text{ parametrized affine transformation} \\ \rho \longrightarrow \text{ non-linear activation function} \end{split}$$

Usage:

- Let x and y are related in some manner, say y = f(x).
- We are only given $S = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^N$.
- NN_{θ} can be used to learn f.

Consider a suitable measure

$$\mu:\Omega_x\times\Omega_y\times\Omega_x\times\Omega_y\to\mathbb{R}$$

s.t. $\mu(x, y, x, NN_{\theta}(x))$ is the error/discrepancy between $(x, y) \in S$ and $(x, NN_{\theta}(x))$.

Define the loss/objective function

$$\Pi(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \mu(\boldsymbol{x}_i, \boldsymbol{y}_i, \boldsymbol{x}_i, NN_{\boldsymbol{\theta}}(\boldsymbol{x}_i))$$

Solve the optimization problem

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\arg\min \Pi(\boldsymbol{\theta})}$$

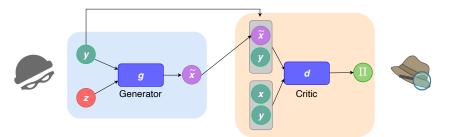
Then $NN_{\theta^*} \approx f$

Also need to tune network hyper-parameters:

- Width Depth (L) Activation function ρ Optimizer
- Loss function
 Dataset

Conditional generative adversarial network (cGAN)

- Learning distributions conditioned on another field.
- ▶ Comprises two neural networks, *g* and *d*.
- Flipping role of x and y for inverse problems.



Generator network:

- $\blacktriangleright g: \Omega_z \times \Omega_y \to \Omega_x.$
- ► Latent variable $Z \sim P_Z$, e.g. N(0, I). Also $N_z \ll N_x$.
- $(\boldsymbol{x}, \boldsymbol{y})$ sampled from true P_{XY}

Critic network:

- $\blacktriangleright d: \Omega_x \times \Omega_y \to \mathbb{R}.$
- ▶ *d* tries to detect fake samples.
- ► d(x, y) large for real x, small otherwise.

Conditional generative adversarial network (cGAN)

• Given Y = y and $Z \sim P_Z$ we get a random variable

$$X^g = g(Z, y), \quad X^g \sim P^g_{X|Y}.$$

Objective function

$$\Pi(\boldsymbol{g}, d) = \mathop{\mathbb{E}}_{\substack{(\boldsymbol{X}, \boldsymbol{Y}) \sim P_{\boldsymbol{X}\boldsymbol{Y}} \\ \boldsymbol{Z} \sim P_{\boldsymbol{Z}}}} \left[d(\boldsymbol{X}, \boldsymbol{Y}) - d(\boldsymbol{g}(\boldsymbol{Z}, \boldsymbol{Y}), \boldsymbol{Y}) \right]$$

▶ g and d determined (with constraint $||d||_{Lip} \leq 1$) through

$$(\boldsymbol{g}^*, d^*) = \operatorname*{arg\,min}_{\boldsymbol{g}} \operatorname{arg\,max}_{d} \Pi(\boldsymbol{g}, d)$$

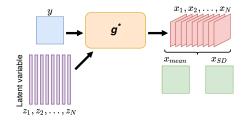
Adler et al. (2018) proved that the minmax problem is equivalent to

$$\boldsymbol{g}^* = \arg\min_{\boldsymbol{g}} \mathbb{E}_{\boldsymbol{Y} \sim P_{\boldsymbol{Y}}} \left[W_1(P_{\boldsymbol{X}|\boldsymbol{Y}}, P_{\boldsymbol{X}|\boldsymbol{Y}}^{\boldsymbol{g}}) \right]$$

where W_1 is the Wasserstein-1 distance.

Steps:

- Acquire samples $\{x_1, ..., x_N\}$, where x_i are sampled from P_X .
- For each x_i acquire the measurement y_i (using \mathcal{F}). y_i will be a sample from $P_{Y|X}$
- Construct the paired set $S = \{(x_1, y_1), ..., (x_N, y_N)\}$. (x_i, y_i) can be seen as sampled from true joint P_{XY} .
- ▶ Train a cGAN on S.
- For a new test measurement y, generate samples using g^* .
- Evaluate statistics using Monte Carlo



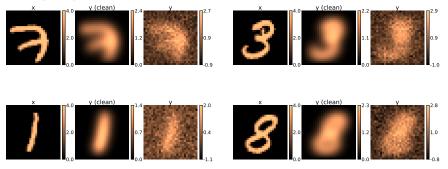
- ▶ We want to solve the inverse heat conduction problem.
- Assume the space has $N_x = 28 \times 28 = 784$ sensors.
- ► X: Initial temperature at the sensors.
- > Y: Noisy final temperature at the sensors.
- We assume $\kappa = 0.2$
- (x, y) pairs obtained by numerically solving the forward problem \mathcal{F} and artificially adding noise.
- ▶ We need to assume some prior distribution on X.

The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.

Inverse heat equation: MNIST prior on X

Assuming X to given by MNIST handwritten digits: u_0 takes the value 4.0 on the digit and 0.0 everywhere else.

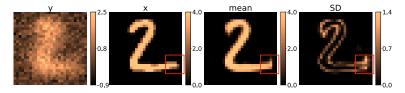
Training samples:

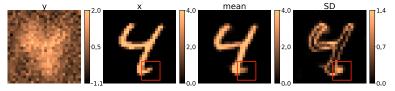


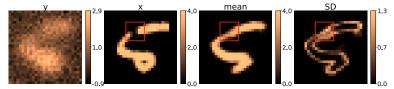
- ► Trained a network with dimension $N_z = 100$ for latent variable Z. Note that $N_x = 784$.
- ▶ We don't have clean y in real problems!

Inverse heat equation: testing

Testing trained generator g^* . Monte Carlo statistics with 800 z samples.

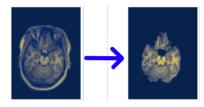


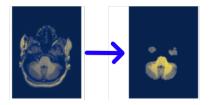




MRI brain extraction problem

- MRI images of the head used in several downstream task:
 - Quantifying grey and white matter
 - Monitoring neurological diseases, e.g., Alzheimer's
 - Estimating brain athrophy
- MRI images need to undergo "skull stripping": eliminating everything other than the brain.
- Manual process can be tedious and subjective.
- Existing algorithms do not quantify uncertainty.





Setup

- ► X: Image of the brain (what we infer)
- Y: Image of the head: original MRI
- Each image has shape $256 \times 192 \implies 49,152$ pixels
- Publicly available NFBS paired dataset used for training (no explicit *F*)
- cGAN trained with latent dimension $N_z = 256$.

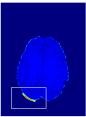
Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks (A. Moazami, D. Ray, D. Pelletier, A. A. Oberai); preprint 2022.

Testing on a new sample

Output (mean)

Target image

Standard Deviation



- Conditional GANs can be used to approximate and sample from conditional distributions.
- ▶ Required paired data to train supervised learning model.
- What do we gain?
 - Ability to represent and encode complex data.
 - Dimension reduction since $N_z \ll N_x$.

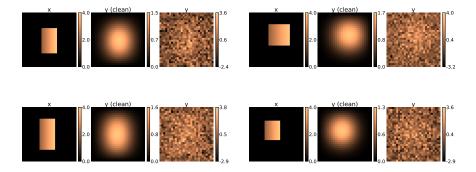
	N_x	N_z	Dim. compression
Inverse heat equation	784	100	7.84
Brain extraction	49,152	256	192

- Once trained, sampling from cGAN is quick and easy.
- Algorithm tested for many other physics-based and medical applications.

Questions?

Inferring initial condition: parametric prior

Assuming *X* to given by a rectangular inclusion and $N_x = N_y = 28 \times 28 = 784$ Training samples:



We never actually have clean y!

Inferring initial condition: parametric prior

Testing trained cGAN (statistics with 800 z samples)

