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Probability, Monte Carlo and Bayes theorem

v

» Forward, inverse problems and the Bayesian framework

» Neural networks

» Conditional generative adversarial networks (CGANs)

v

Applications:
> Academic example: heat equation

> Real life example: MRI brain extraction
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Probability basics

» X is an R-valued random variable with distribution Px, e.g. uniform ¢/([a, ]),
Gaussian N (y,0?).

» Expectations: For a function f : R — R, the expectation of f(X) is

X~PX ]_/f )Px (

For f(x) = z, we get the mean

ux = E [X]:/]R:cpx(x)dx.

X~ Py

For f(z) = (z — pux)?, we get the variance

Var(X) := XEEPX [(X — pux)? A & — px )’ Px (x)dz.
The standard deviation is SD(X) := y/Var(X).
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Probability basics

» X = (X1, X2) is an R?-valued (2 dimensional) random variable with the joint
distribution Px = Px, x,, €.9. Gaussian N(u,X).

» Expectations: For a function f : R*> — R

E [f(X)] = / F(z)Px (2)dz.

X~Px

For a a vector-valued function f : R? — R* with f(x) = [fi(x), - , fx(2)],

FOO1= | B, (X0, B, 1] e BY

E
X~Px X~Px

In particular, f(x) = « gives 2-dimensional mean

px = B X] =l p].

The covariance matrix ©x € R?*? s given by

Var(Xy) Cov(X1, X2)

Yx = Cov(X1, X2) Var(Xs)
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Probability basics

» Marginals: The probability distributions of each component
Px, (z1) :/Px(mhﬁvz)dm, Px, (z2) Z/Px(xl,xz)dxl.
R R

» Conditionals: The conditional probability distribution of X; given X5 = z»

Px, x, (x17$2)
Px, (z2)

Similarly, the conditional probability distribution of X, given X1 = 1

Px,|x, (z1]22) =

Px, x, ($17~7)2)
Px,(z1)

The conditional expectation: given X, = z»

P, x, (z2]71) =

E[f(X) = / F(@1) Py x, (01 22)01.

X1~Px | x,

» Bayes’ theorem: Relates both conditionals

Px,1x, ($2|$€1)le (xl)
Px,(z2) .

PX1\X2 ($’1|$2) =
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Images as random variables

Let S = {=¥,2® ...} be a set of images of shape N x N. For example:

» Each image =) can be seen as a realization of an N2 dimensional random
variable X.

» Each pixel is a random variable X;, for 1 < i < N2

» We can calculate pixelwise mean and standard deviation of pixel intensity.
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Monte Carlo (MC)

» Calculating XEEP X)=[f(= x)dx may be non-trivial.

» Approximate the integral using a suitable quadrature.
» Monte Carlo is one such strategy:

> Choose i.i.d. samples {z(D} ¥ |
> Calculate the estimator

N
Enlfl = 5 S 7@~ B (£(X)]
=1

- O(-L
> Error = O(W)
» Useful when all we have is data
For example, with N = 10,000 random circle image
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Forward and inverse problems

Consider the phenomena of heat flow through some material.

Modelled using the heat equation:

Temperature
Ou(s,t) - 1> sensors
3 — kAu(s,t)) =0 (Nin each direction)
t

u(s,0) = ug(s)
where
u(s,t) — temperature at location s at time ¢
ug(s) — initial temperature at location s
x — thermal conductivity of material

Forward problem F: Given uo(s) at the sensor nodes determine (s, T)
].'

Discrete Inmal Temp. Discreto Final Temp.
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Forward and inverse problems

Consider the phenomena of heat flow through some material.

Modelled using the heat equation:

Temperature
Ou(s,t) - 1> sensors
3 — kAu(s,t)) =0 (Nin each direction)
t

u(s,0) = ug(s)
where
u(s,t) — temperature at location s at time ¢
ug(s) — initial temperature at location s
x — thermal conductivity of material

Inverse problem F~': Given u(s, T) at the sensor nodes infer u(s)

].'

DlscrslelnmalTemp 00 Discrete Final Temp. 15
A F*r
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Forward and inverse problems

Consider the phenomena of heat flow through some material.

Modelled using the heat equation:

du(s, t)

— kAu(s,t)) =0
P (s, 1))

u(s,0) = ug(s)
where
u(s,t) — temperature at location s at time ¢
ug(s) — initial temperature at location s
x — thermal conductivity of material

Inverse problem F~': Given noisy u(s, T) infer uo(s)

]: noise

Discrete Inmal Temp. Discrete Final Temp. Discrete Noisy Final Temp.

: n :
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Forward and inverse problems

Challenges with inverse problems:
» Inverse map is not well posed.
» Noisy measurements.

» Need to encode prior knowledge about the inferred field = (e.g. initial
temperature).

Uncertainty in inferred field critical for applications with high-stake decisions.
Example: Medical imaging to detect liver lesions

Un-safe Safe

Uncertainty
(pt-wise SD)
[Adler et al., 2018]

Measurement Inferred field Measurement Inferred field
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Bayesian framework

Assume x and y are modelled by random variables X and Y.

AlIM: Given a measurement Y = y approximate the conditional distribution

Py x (ylz)Px ()
v (zly) Py (y)
Px (=) : prior distribution
Py (y) : evidence
Py x (y|z) : likelihood of observing y given =

Px |y (z|y) : posterior distribution given y

We want to generate samples:

Yy Z1,%2,.--3 TN
Pxy (zly)
=—>  sampler =
S —
Tmean ZSD
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Bayesian formulation: challenges

» Posterior sampling techniques, such as Markov Chain Monte Carlo, are
prohibitively expensive when dimension of X is large.

» Characterization of priors for complex data

For example,  data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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Deep neural network

A neural network is a parametrized mapping
NNg : Qy — €y
typically formed by alternating composition
N Neg —poA(L+1)opoA§L)opoA(L Do opoA(ell)
where

0 = {6:.}r_, — trainable weights and biases of the network
A(Q'Z) — parametrized affine transformation

p — non-linear activation function

P
Z4 , > Y1
Z3 P > Y2
Z3 > Y3
AW > P
& Z4 > Va
Z5 Ly Y5
Wx+b [
z >
61= {W.b} o Yo
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Deep neural network

A neural network is a parametrized mapping
NNg : Qz — Qy
typically formed by alternating composition

N Ng ::poA(eLL:?opoAgLL)opoAéLLill)o--'opoA(ell)

where
0 = {6:.}r_, — trainable weights and biases of the network
A(Q'Z) — parametrized affine transformation
p — non-linear activation function
Usage:

» Let  and y are related in some manner, say y = f(x).
» We are only given S = {(x:,y:)} ;.
» N Ng can be used to learn f.
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Deep neural network

Consider a suitable measure
Qe X Qy x Qe xQy = R

s.t. u(x,y,z, NNg(x)) is the error/discrepancy between (z,y) € S and
(¢, NNg()).

Define the loss/objective function

N
Z whyivmiaNNe(mi))

Z\H

Solve the optimization problem
0" = arg minlI(0)
2]
Then NNg- ~ f
Also need to tune network hyper-parameters:

e Width e Depth (L) e Activation function p e Optimizer
e Loss function e Dataset
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Conditional generative adversarial network (cGAN)

» Learning distributions conditioned on another field.
» Comprises two neural networks, g and d.
» Flipping role of « and y for inverse problems.

2 <

00 (00

Generator Critic
Generator network: Critic network:
> g: Q. xQy — Q. > d:Qy xQy — R
» Latent variable Z ~ Pz, e.g. » d tries to detect fake samples.
N(0,I). Also N> < Nq. » d(x,y) large for real , small
» (xz,y) sampled from true Pxy otherwise.
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Conditional generative adversarial network (cGAN)

» GivenY =y and Z ~ Pz we get a random variable
X?=g(Z,y), X%~Pgy.
» Objective function

H(ga d) = (X,;)EA};PXY [d(va) - d(g(Za Y),Y)]

» g and d determined (with constraint ||d||Lp < 1) through
(g*,d") = argmin arg maxII(g, d)
g d
» Adler et al. (2018) proved that the minmax problem is equivalent to
g' =argmin B (Wi (Pxiy, Py )]

where W is the Wasserstein-1 distance.
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Posterior sampling using cGANs

Steps:

>
>

>

v

Acquire samples {x1, ..., zx }, where x; are sampled from Px.

For each x; acquire the measurement y; (using F). y; will be a sample from
Py x

Construct the paired set S = {(z1,y1), ..., (x~n,yn)}. (zi, y;) can be seen as
sampled from true joint Pxy .

Train acGAN on S.
For a new test measurement y, generate samples using g*.
Evaluate statistics using Monte Carlo
Y P T1,L2y.+-4y TN
—»‘ g9 ‘—»
! )

% / Tmean *sp

g

5

3

21,2253 2N
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Inverse heat equation

» We want to solve the inverse heat conduction problem.
» Assume the space has N, = 28 x 28 = 784 sensors.

» X: Initial temperature at the sensors.

v

Y': Noisy final temperature at the sensors.

» We assume xk = 0.2

v

(x, y) pairs obtained by numerically solving the forward problem F and
artificially adding noise.

» We need to assume some prior distribution on X.

The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse
problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.
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Inverse heat equation: MNIST prior on X

Assuming X to given by MNIST handwritten digits: u, takes the value 4.0 on the
digit and 0.0 everywhere else.

Training samples:

X AOI‘ (clean) ‘ )} 5 X ] (clean)

(clean) . ] . (clean)

g

» Trained a network with dimension N, = 100 for latent variable Z. Note that
N, = 784.

» We don’t have clean y in real problems!

0.0
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Inverse heat equation: testing

Testing trained generator g*. Monte Carlo statistics with 800 z samples.

s X ] mean
0.8 J .
'
- | | |
-0.9 .
2.0 .
05. i |
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MRI brain extraction problem

» MRIimages of the head used in several downstream task:
> Quantifying grey and white matter
> Monitoring neurological diseases, e.g., Alzheimer’s
> Estimating brain athrophy

» MRI images need to undergo "skull stripping”: eliminating everything other
than the brain.

» Manual process can be tedious and subjective.

» Existing algorithms do not quantify uncertainty.
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MRI brain extraction problem

Setup
» X: Image of the brain (what we infer)

» Y': Image of the head: original MRI

v

Each image has shape 256 x 192 = 49, 152 pixels

v

Publicly available NFBS paired dataset used for training (no explicit )

» cGAN trained with latent dimension N, = 256.

Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks (A.
Moazami, D. Ray, D. Pelletier, A. A. Oberai); preprint 2022.
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MRI brain extraction problem

Testing on a new sample

Input image Target image

Output (mean) Standard Deviation
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Conclusion

» Conditional GANs can be used to approximate and sample from conditional
distributions.

» Required paired data to train — supervised learning model.

» What do we gain?
> Ability to represent and encode complex data.

» Dimension reduction since N, < Ng.

Ny N, | Dim. compression
Inverse heat equation 784 100 7.84
Brain extraction 49,152 | 256 192

> Once trained, sampling from cGAN is quick and easy.

» Algorithm tested for many other physics-based and medical applications.

Questions?
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Inferring initial condition: parametric prior

Assuming X to given by a rectangular inclusion and N, = N, = 28 x 28 = 784

] | (clean) ‘
X ‘ . | (clean) ‘

Training samples:

X

n ino
X

n ‘oo

(clean)

(clean)

We never actually have clean y!

D. Ray DL Bayesian 23



Inferring initial condition:

Testing trained cGAN (statistics with 800 z samples)

ref. mean

4.2 X 4.0 .
HN u ) n‘ |
-2.8 0.0 X

-
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