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Outline

I Probability, Monte Carlo and Bayes theorem

I Forward, inverse problems and the Bayesian framework

I Neural networks

I Conditional generative adversarial networks (cGANs)

I Applications:
I Academic example: heat equation

I Real life example: MRI brain extraction
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Probability basics

I X is an R-valued random variable with distribution PX , e.g. uniform U([a, b]),
Gaussian N(µ, σ2).

I Expectations: For a function f : R→ R, the expectation of f(X) is

E
X∼PX

[f(X)] =

∫
R
f(x)PX(x)dx.

For f(x) = x, we get the mean

µX := E
X∼PX

[X] =

∫
R
xPX(x)dx.

For f(x) = (x− µX)2, we get the variance

V ar(X) := E
X∼PX

[
(X − µX)2] =

∫
R
(x− µX)2PX(x)dx.

The standard deviation is SD(X) :=
√
V ar(X).
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Probability basics

I X = (X1, X2) is an R2-valued (2 dimensional) random variable with the joint
distribution PX = PX1X2 , e.g. Gaussian N(µ,Σ).

I Expectations: For a function f : R2 → R

E
X∼PX

[f(X)] =

∫
f(x)PX(x)dx.

For a a vector-valued function f : R2 → Rk with f(x) = [f1(x), · · · , fk(x)],

E
X∼PX

[f(X)] =

[
E

X∼PX

[f1(X)] , · · · , E
X∼PX

[fk(X)]

]
∈ Rk.

In particular, f(x) = x gives 2-dimensional mean

µX := E
X∼PX

[X] = [µ1, µ2].

The covariance matrix ΣX ∈ R2×2 is given by

ΣX :=

[
V ar(X1) Cov(X1, X2)

Cov(X1, X2) V ar(X2)

]
.
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Probability basics

I Marginals: The probability distributions of each component

PX1(x1) =

∫
R
PX(x1, x2)dx2, PX2(x2) =

∫
R
PX(x1, x2)dx1.

I Conditionals: The conditional probability distribution of X1 given X2 = x2

PX1|X2
(x1|x2) =

PX1X2(x1, x2)

PX2(x2)
.

Similarly, the conditional probability distribution of X2 given X1 = x1

PX2|X1
(x2|x1) =

PX1X2(x1, x2)

PX1(x1)
.

The conditional expectation: given X2 = x2

E
X1∼PX1|X2

[f(X1)] =

∫
f(x1)PX1|X2

(x1|x2)dx1.

I Bayes’ theorem: Relates both conditionals

PX1|X2
(x1|x2) =

PX2|X1
(x2|x1)PX1(x1)

PX2(x2)
.
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Images as random variables

Let S = {x(1),x(2), · · · } be a set of images of shape N ×N . For example:

I Each image x(i) can be seen as a realization of an N2 dimensional random
variable X.

I Each pixel is a random variable Xi, for 1 ≤ i ≤ N2.

I We can calculate pixelwise mean and standard deviation of pixel intensity.
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Monte Carlo (MC)

I Calculating E
X∼PX

[f(X)] =
∫
f(x)PX(x)dx may be non-trivial.

I Approximate the integral using a suitable quadrature.
I Monte Carlo is one such strategy:

I Choose i.i.d. samples {x(i)}Ni=1
I Calculate the estimator

EN [f ] =
1

N

N∑
i=1

f(x(i)) ≈ E
X∼PX

[f(X)]

I Error = O( 1√
N
)

I Useful when all we have is data

For example, with N = 10, 000 random circle image

Xmean XSD
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Forward and inverse problems

Consider the phenomena of heat flow through some material.

Temperature 

sensors


(N in each direction)

Modelled using the heat equation:

∂u(s, t)

∂t
− κ∆u(s, t)) = 0

u(s, 0) = u0(s)
where

u(s, t)→ temperature at location s at time t

u0(s)→ initial temperature at location s

κ→ thermal conductivity of material

Forward problem F : Given u0(s) at the sensor nodes determine u(s, T )
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Forward and inverse problems

Consider the phenomena of heat flow through some material.

Temperature 

sensors


(N in each direction)

Modelled using the heat equation:

∂u(s, t)

∂t
− κ∆u(s, t)) = 0

u(s, 0) = u0(s)
where

u(s, t)→ temperature at location s at time t

u0(s)→ initial temperature at location s

κ→ thermal conductivity of material

Inverse problem F−1: Given noisy u(s, T ) infer u0(s)
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Forward and inverse problems

Challenges with inverse problems:

I Inverse map is not well posed.

I Noisy measurements.

I Need to encode prior knowledge about the inferred field x (e.g. initial
temperature).

Uncertainty in inferred field critical for applications with high-stake decisions.

Example: Medical imaging to detect liver lesions
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Bayesian framework

Assume x and y are modelled by random variables X and Y .

AIM: Given a measurement Y = y approximate the conditional distribution

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)

PX (x) : prior distribution

PY (y) : evidence

PY |X (y|x) : likelihood of observing y given x

PX|Y (x|y) : posterior distribution given y

We want to generate samples:

sampler
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Bayesian formulation: challenges

I Posterior sampling techniques, such as Markov Chain Monte Carlo, are
prohibitively expensive when dimension of X is large.

I Characterization of priors for complex data

For example, x data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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Deep neural network

A neural network is a parametrized mapping

NNθ : Ωx → Ωy

typically formed by alternating composition

NNθ := ρ ◦ A(L+1)
θL+1

◦ ρ ◦ A(L)
θL
◦ ρ ◦ A(L−1)

θL−1
◦ · · · ◦ ρ ◦ A(1)

θ1

where

θ = {θk}Lk=1 −→ trainable weights and biases of the network

A(k)
θk
−→ parametrized affine transformation

ρ −→ non-linear activation function

x1
x2
x3
x4

W x + b
= {W,b}

z1
z2
z3
z4
z5
z6

y1
y2
y3
y4
y5
y6

Usage:

I Let x and y are related in some manner, say y = f(x).

I We are only given S = {(xi,yi)}Ni=1.

I NNθ can be used to learn f .
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Deep neural network

Consider a suitable measure

µ : Ωx × Ωy × Ωx × Ωy → R

s.t. µ(x,y,x, NNθ(x)) is the error/discrepancy between (x,y) ∈ S and
(x, NNθ(x)).

Define the loss/objective function

Π(θ) =
1

N

N∑
i=1

µ(xi,yi,xi, NNθ(xi))

Solve the optimization problem

θ∗ = arg min
θ

Π(θ)

Then NNθ∗ ≈ f

Also need to tune network hyper-parameters:
•Width • Depth (L) • Activation function ρ • Optimizer
• Loss function • Dataset
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Conditional generative adversarial network (cGAN)

I Learning distributions conditioned on another field.
I Comprises two neural networks, g and d.
I Flipping role of x and y for inverse problems.

z

g x~

Generator

d

Critic

x~

x

y y

y

Generator network:

I g : Ωz × Ωy → Ωx.

I Latent variable Z ∼ PZ , e.g.
N(0, I). Also Nz � Nx.

I (x,y) sampled from true PXY

Critic network:

I d : Ωx × Ωy → R.

I d tries to detect fake samples.

I d(x,y) large for real x, small
otherwise.
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Conditional generative adversarial network (cGAN)

I Given Y = y and Z ∼ PZ we get a random variable

Xg = g(Z,y), Xg ∼ P gX|Y .

I Objective function

Π(g, d) = E
(X,Y )∼PXY

Z∼PZ

[
d(X,Y )− d

(
g(Z,Y ),Y

)]
I g and d determined (with constraint ‖d‖Lip ≤ 1) through

(g∗, d∗) = arg min
g

arg max
d

Π(g, d)

I Adler et al. (2018) proved that the minmax problem is equivalent to

g∗ = arg min
g

E
Y ∼PY

[
W1(PX|Y , P

g
X|Y )

]
where W1 is the Wasserstein-1 distance.
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Posterior sampling using cGANs

Steps:

I Acquire samples {x1, ...,xN}, where xi are sampled from PX .

I For each xi acquire the measurement yi (using F). yi will be a sample from
PY |X

I Construct the paired set S = {(x1,y1), ..., (xN ,yN )}. (xi,yi) can be seen as
sampled from true joint PXY .

I Train a cGAN on S.

I For a new test measurement y, generate samples using g∗.

I Evaluate statistics using Monte Carlo

g*
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Inverse heat equation

I We want to solve the inverse heat conduction problem.

I Assume the space has Nx = 28× 28 = 784 sensors.

I X: Initial temperature at the sensors.

I Y : Noisy final temperature at the sensors.

I We assume κ = 0.2

I (x,y) pairs obtained by numerically solving the forward problem F and
artificially adding noise.

I We need to assume some prior distribution on X.

The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse
problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.

D. Ray DL Bayesian 16



Inverse heat equation: MNIST prior on X

Assuming X to given by MNIST handwritten digits: u0 takes the value 4.0 on the
digit and 0.0 everywhere else.

Training samples:
x y (clean) y

0.0

2.0

4.0

0.0

1.2

2.4

-0.9

0.9

2.7 x y (clean) y

0.0

2.0

4.0

0.0

1.1

2.2

-1.0

0.9

2.9

x y (clean) y

0.0

2.0

4.0

0.0

0.7

1.4

-1.1

0.4

2.0 x y (clean) y

0.0

2.0

4.0

0.0

1.2

2.3

-0.8

1.0

2.8

I Trained a network with dimension Nz = 100 for latent variable Z. Note that
Nx = 784.

I We don’t have clean y in real problems!
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Inverse heat equation: testing

Testing trained generator g∗. Monte Carlo statistics with 800 z samples.
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MRI brain extraction problem

I MRI images of the head used in several downstream task:
I Quantifying grey and white matter
I Monitoring neurological diseases, e.g., Alzheimer’s
I Estimating brain athrophy

I MRI images need to undergo ”skull stripping”: eliminating everything other
than the brain.

I Manual process can be tedious and subjective.

I Existing algorithms do not quantify uncertainty.
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MRI brain extraction problem

Setup

I X: Image of the brain (what we infer)

I Y : Image of the head: original MRI

I Each image has shape 256× 192 =⇒ 49, 152 pixels

I Publicly available NFBS paired dataset used for training (no explicit F)

I cGAN trained with latent dimension Nz = 256.

Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks (A.
Moazami, D. Ray, D. Pelletier, A. A. Oberai); preprint 2022.
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MRI brain extraction problem

Testing on a new sample
Input image Target image

Output (mean) Standard Devia�on
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Conclusion

I Conditional GANs can be used to approximate and sample from conditional
distributions.

I Required paired data to train – supervised learning model.

I What do we gain?
I Ability to represent and encode complex data.

I Dimension reduction since Nz � Nx.
Nx Nz Dim. compression

Inverse heat equation 784 100 7.84
Brain extraction 49,152 256 192

I Once trained, sampling from cGAN is quick and easy.

I Algorithm tested for many other physics-based and medical applications.

Questions?
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Inferring initial condition: parametric prior

Assuming X to given by a rectangular inclusion and Nx = Ny = 28× 28 = 784

Training samples:

x y (clean) y

0.0

2.0

4.0

0.0

0.7

1.5

-2.4

0.6

3.6 x y (clean) y

0.0

2.0

4.0

0.0

0.8

1.7

-3.2

0.4

4.0

x y (clean) y

0.0

2.0

4.0

0.0

0.8

1.6

-2.9

0.5

3.8 x y (clean) y

0.0

2.0

4.0

0.0

0.6

1.3

-2.9

0.4

3.6

We never actually have clean y!
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Inferring initial condition: parametric prior

Testing trained cGAN (statistics with 800 z samples)

y x ref. mean ref. SD

-2.8

0.7

4.2

0.0

2.0

4.0

0.0

2.0

4.0

0.0

1.0

2.0

Ref. Nz=1 Nz=2 Nz=3 Nz=4 Nz=5 Nz=10 Nz=50

0.0

2.0

3.9

Ref. Nz=1 Nz=2 Nz=3 Nz=4 Nz=5 Nz=10 Nz=50

0.0

1.0

2.0
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