EPFL

Using deep learning to overcome algorithmic bottlenecks

Deep Ray Institute of Mathematics Email: deep.ray@epfl.ch Website: deepray@github.io

NumHyp19 Malaga, 22 June 2019

École polytecnique fédérale de Lausanne

In collaboration with ...

Jan S. Hesthaven Director MCSS EPFL

Qian Wang Postdoc EPFL

Niccolò Discacciati Doctoral student EPFL

Lukas Schwander Master student ETH Zürich

Deep learning in action

Deep learning in action

Blending deep learning and numerics

Blending deep learning and numerics

- Solving differential equations [Lagaris et al., 1998; Golak et al., 2007; Rudd et al., 2015; Tompson et al., 2017; Long et al. 2017; Raissi et al., 2018, Magiera et al., 2019]
- Subgrid scale modelling/LES/RANS [Tracey et al., 2013; Zhang et al., 2015; Ling et al., 2016; Kurian et al. 2018; Beck et al.; Duraisamy et al., 2019; Maulik et al., 2019]
- Uncertainty quantification [Tripathy et al., 2018, Kwon et al. 2018; Schwab et al, 2018; Mishra et al., 2019; Wang et al., 2019]
- Reduced order modelling [Kutz et al, 2016; Hartman et al., 2017; Carlberg et al. 2018; Willcox et al., 2019; Wang et al., 2019]
- Inverse problems [Schönlieb et al. 2017, Lunz et al., 2018; Chang et al., 2018; Raissi et al. 2019]
- Shape optimization [Timnaka et al., 2017; Baque at al., 2018; Duraisamy et al., 2019, Sasaki et al. 2019]

Motivation

Motivation

Approximating the function using a smooth basis

Approximating the function using a smooth basis

$$u(x) \approx \sum_{p=1}^{K} a_p \phi_p(x)$$

Mechanism to detect discontinuity/smoothness

Mechanism to detect discontinuity/smoothness

Mechanism to detect discontinuity/smoothness

Based on the local analysis of data, we can

- Limit the local solution
- Adapt the local polynomial/basis order
- Add artificial viscosity

Mechanism to detect discontinuity/smoothness

Based on the local analysis of data, we can

- Limit the local solution
- Adapt the local polynomial/basis order
- Add artificial viscosity

Problems with existing methods

- Specification of problem-dependent parameters
- Computationally-expensive
- Too conservative

 $\mathbf{F}: \mathbf{X} \mapsto \mathbf{Y}, \quad \mathbf{X} \in \mathbb{R}^n \ \mathbf{Y} \in \mathbb{R}^m$

 $\mathbf{F}: \mathbf{X} \mapsto \mathbf{Y}, \quad \mathbf{X} \in \mathbb{R}^n \ \mathbf{Y} \in \mathbb{R}^m$

We train a suitable multilayer perceptron

 $\mathbf{F}: \mathbf{X} \mapsto \mathbf{Y}, \quad \mathbf{X} \in \mathbb{R}^n \ \mathbf{Y} \in \mathbb{R}^m$

We train a suitable multilayer perceptron

 $\mathbf{F}: \mathbf{X} \mapsto \mathbf{Y}, \quad \mathbf{X} \in \mathbb{R}^n \ \mathbf{Y} \in \mathbb{R}^m$

We train a suitable multilayer perceptron

 $\mathbf{F}: \mathbf{X} \mapsto \mathbf{Y}, \quad \mathbf{X} \in \mathbb{R}^n \ \mathbf{Y} \in \mathbb{R}^m$

We train a suitable multilayer perceptron

 $\hat{\mathbf{Y}} = \mathcal{O} \circ \sigma \circ H^{L} \circ \sigma \circ H^{L-1} \circ ... \circ \sigma \circ H^{1}(\mathbf{X}), \quad H^{\prime}(\tilde{\mathbf{X}}) = \mathbf{W}^{\prime} \tilde{\mathbf{X}} + \mathbf{b}^{\prime}$

 $\mathbf{F}: \mathbf{X} \mapsto \mathbf{Y}, \quad \mathbf{X} \in \mathbb{R}^n \ \mathbf{Y} \in \mathbb{R}^m$

We train a suitable multilayer perceptron

Find parameters $\theta = \{\mathbf{W}^{\prime}, \mathbf{b}^{\prime}\}$ that minimizes the loss function

 $\mathcal{L}(\mathbf{Y}_i, \hat{\mathbf{Y}}_i), \qquad (\mathbf{X}_i, \mathbf{Y}_i) \in \mathbb{T}.$

Then $\hat{\mathbf{F}}(\theta) \approx \mathbf{F}$.

Based on some theory and prior experience, choose

- Network size depth and width
- Activation function
- Loss function
- Regularization technique to avoid overfitting
- Training and validation datasets
- Stopping criteria for training
- Optimizer

Your expectation from the network!

- Troubled-cell detection (Hesthaven and R.)
- Artificial viscosity (Discacciati, Hesthaven and R.)
- p-adaption (Wang, Hesthaven and R.)
- Local viscosity for spectral methods (Schwander, Hesthaven and R.)

- Troubled-cell detection (Hesthaven and R.)
- Artificial viscosity (Discacciati, Hesthaven and R.)
- p-adaption (Wang, Hesthaven and R.)
- Local viscosity for spectral methods (Schwander, Hesthaven and R.)

The network is always trained offline!

Troubled-cell detector

Conservation laws

Consider

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{f}(\mathbf{u})}{\partial x} = \mathbf{0}$$
$$\mathbf{u}(x, \mathbf{0}) = \mathbf{u}_0(x)$$

Non-linearity ⇒⇒ Discontinuities in finite time Strategy in the context of RKDG schemes:

Detecting and limiting

Strategy in the context of RKDG schemes:

1. Find troubled-cells

Detecting and limiting

Strategy in the context of RKDG schemes:

- 1. Find troubled-cells
- 2. Limit solution in flagged cells

Detecting and limiting

Strategy in the context of RKDG schemes:

- 1. Find troubled-cells
- 2. Limit solution in flagged cells

Issues:

- Problem-dependent parameters
- If insufficient cells marked —> re-appearance of Gibbs oscillations
- If excessive cells marked
 - Unnecessary computational cost
 - Loss of accuracy for strong limiters

Available troubled-cell indicators

- Minmod-based TVB limiter [Cockburn and Shu; Math. Comp. '98]
- Moment limiter [Biswas et al.; Appl. Numer. Math. '94]
- Modified moment limiter [Burbeau; JCP '01]
- Monotonicity preserving limiter [Suresh and Huynh; JCP '97]
- Modified MP limiter [Rider and Margolin; JCP '01]
- KXRCF indicator [Krivodonova et al.; App. Numer. Math. '04]
- Polynomial degree based limiter [Fu and Shu; JCP '17]
- Outlier detection using Tukey's boxplot method [Vuik and Ryan; J. Sci. Comp. '16]

Available troubled-cell indicators

- Minmod-based TVB limiter [Cockburn and Shu; Math. Comp. '98]
- Moment limiter [Biswas et al.; Appl. Numer. Math. '94]
- Modified moment limiter [Burbeau; JCP '01]
- Monotonicity preserving limiter [Suresh and Huynh; JCP '97]
- Modified MP limiter [Rider and Margolin; JCP '01]
- KXRCF indicator [Krivodonova et al.; App. Numer. Math. '04]
- Polynomial degree based limiter [Fu and Shu; JCP '17]
- Outlier detection using Tukey's boxplot method [Vuik and Ryan; J. Sci. Comp. '16]

An MLP-based detector

▶ Input
$$\mathbf{X} = [\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}]$$

▶ Input
$$\mathbf{X} = [\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}, u_i^-, u_i^+] \in \mathbb{R}^5$$

▶ Input
$$\mathbf{X} = [\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}, u_i^-, u_i^+] \in \mathbb{R}^5$$
 (Scaled)

▶ Input
$$\mathbf{X} = [\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}, u_i^-, u_i^+] \in \mathbb{R}^5$$
 (Scaled)

5 Hidden Layers with width 256, 128, 64, 32, 16

- ▶ Input $\mathbf{X} = [\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}, u_i^-, u_i^+] \in \mathbb{R}^5$ (Scaled)
- 5 Hidden Layers with width 256, 128, 64, 32, 16
- Leaky ReLU activation function with $\nu = 10^{-3}$

▶ Input
$$\mathbf{X} = [\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}, u_i^-, u_i^+] \in \mathbb{R}^5$$
 (Scaled)

- 5 Hidden Layers with width 256, 128, 64, 32, 16
- Leaky ReLU activation function with $\nu = 10^{-3}$
- Softmax output function

$$\hat{Y}^{(k)} \leftarrow rac{e^{\hat{Y}^{(k)}}}{\sum_{j} e^{\hat{Y}^{(j)}}} \in [0,1] \longrightarrow ext{probabilities}$$

 $\begin{array}{l} \text{Output}\; \hat{\mathbf{Y}} = [\hat{\mathcal{Y}}^{(0)},\,\hat{\mathcal{Y}}^{(1)}] \in [0,\,1]^2 \\ \\ \text{Troubled-cell if}\;\,\hat{\mathcal{Y}}^{(0)} > 0.5 \end{array}$

▶ Input
$$\mathbf{X} = [\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}, u_i^-, u_i^+] \in \mathbb{R}^5$$
 (Scaled)

- 5 Hidden Layers with width 256, 128, 64, 32, 16
- Leaky ReLU activation function with $\nu = 10^{-3}$
- Softmax output function

$$\hat{Y}^{(k)} \leftarrow rac{e^{\hat{Y}^{(k)}}}{\sum_{j} e^{\hat{Y}^{(j)}}} \in [0,1] \longrightarrow ext{probabilities}$$

$$\begin{array}{l} \text{Output} \ \hat{\boldsymbol{Y}} = [\hat{\boldsymbol{Y}}^{(0)}, \hat{\boldsymbol{Y}}^{(1)}] \in [0,1]^2 \\ \\ \text{Troubled-cell if} \ \hat{\boldsymbol{Y}}^{(0)} > 0.5 \end{array}$$

Cost functional: L2 regularized cross-entropy

$$\mathcal{L} = -\sum_{i=1}^{K} \sum_{j=0}^{1} Y_{i}^{(j)} \log(\hat{Y}_{i}^{(j)}) + \lambda \|\mathbf{W}\|_{2}^{2}$$

Data sampling is achieved by

• Choose a known function u(x)

- Choose a known function u(x)
- Pick a point x_i

- Choose a known function u(x)
- Pick a point x_i
- Pick a cell size h and make stencil

- Choose a known function u(x)
- Pick a point x_i
- Pick a cell size h and make stencil
- Pick a degree r and approximate

- Choose a known function u(x)
- Pick a point x_i
- Pick a cell size h and make stencil
- Pick a degree r and approximate

► Extract needed data
$$[\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}, u^+_{i-\frac{1}{2}}, u^-_{i+\frac{1}{2}}]$$

Data sampling is achieved by

- Choose a known function u(x)
- Pick a point x_i
- Pick a cell size h and make stencil
- Pick a degree r and approximate
- Extract needed data $[\overline{u}_{i-1}, \overline{u}_i, \overline{u}_{i+1}, u^+_{i-\frac{1}{2}}, u^-_{i+\frac{1}{2}}]$

Flag cell if discontinuity in $[x_{i-\frac{1}{2}} - h/2, x_{i+\frac{1}{2}} + h/2]$

- Comparison with TVB limiter by setting parameter M
- In flagged cells, perform limited linear reconstruction with MUSCL limiter
- Legendre basis (Jacobi polynomials in 2D) with degree r
- Local Lax-Friedrich numerical flux
- Time integration with SSP-RK3

An artificial neural network as a troubled-cell indicator, by R. and Hesthaven; JCP vol. 367, pp. 166–191, 2018.

Detecting troubled-cells on two-dimensional unstructured grids using a neural network, by R. and Hesthaven, 2019 (submitted).

$$u_0(x) = \sin(10\pi x), \quad x \in [0, 1], \quad T_f = 1, \quad N = 100, \quad r = 4$$

Linear advection: $u_t + u_x = 0$

$$u_{0}(x) = \sin(10\pi x), \quad x \in [0, 1], \quad T_{f} = 1, \quad N = 100, \quad r = 4$$

$$1.0 \qquad 1.0 \qquad 1$$

MLP and TVB-3 do not flag any cell

Euler equations: Sod shock tube

$$T_f = 2, \quad N = 100, \quad r = 4$$

Loss of positivity with TVB-3

Euler equations: Sod shock tube

$$T_f = 2, \quad N = 100, \quad r = 4$$

TVB-2

MLP

1D Euler equations: Shu-Osher problem

$$T_f = 1.8, \quad N = 256, \quad r = 4$$

1D Euler equations: Shu-Osher problem

We consider unstructured triangular grids

MLP network with 5 hidden layers of width 20 each

Extension to 2D

We consider unstructured triangular grids

MLP network with 5 hidden layers of width 20 each Training data constructed by:

- Interpolating functions to patch of 4 triangles.
- Extracting linear components, with $\mathbf{X} \in \mathbb{R}^{12}$.
- Label cell as troubled-cell if discontinuity present within circumscribed circle.

 $T_f = 0.8$, h = 0.01, r = 3, Barth-Jesperson limiter

TVB-1

TVB-3

$T_f = 0.8$, h = 0.01, r = 3, Barth-Jesperson limiter

TVB-1

TVB-2

TVB-3

MLP

2D Euler equations: Shock-vortex

$$T_f = 0.8$$
, $h = 0.01$, $r = 3$, Barth-Jesperson limiter

TVB-1

TVB-2

TVB-3

MLP

Predicting artificial viscosity

Now consider the problem

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{f}(\mathbf{u}) = \nabla \cdot \mathbf{g}, \quad \mathbf{g} = \mu \mathbf{w}, \quad \mathbf{w} = \nabla \mathbf{u}$$

Viscosity depends on **u** and locally controls oscillations.

$$\mu \sim h |\mathbf{f}'(\mathbf{u})|$$

Several artificial viscosity models exist

- MDH: Highest Modal Decay [Persson and Peraire; 14th AIAA meet, 2016]
- MDA: Averaged Modal Decay [Klöckner et al.; Math. Mod. Nat. Phen., 2011]
- EV: Entropy Viscosity [Guermond et al.; JCP, 2011]

Dependent on problem specific parameters

Network architecture:

- Input: Full data from each element (no neighbours)
- 5 hidden layers of width 10 each with Leaky ReLU
- Softplus output function, i.e., $f(x) = \log(1 + e^x)$
- Mean Squared Error cost function

Network architecture:

- Input: Full data from each element (no neighbours)
- 5 hidden layers of width 10 each with Leaky ReLU
- Softplus output function, i.e., $f(x) = \log(1 + e^x)$
- Mean Squared Error cost function

Training/validation sets:

- Using numerical solution of conservation laws (only linear adv. and Burgers)
- Target viscosity: viscosity corresponding to "best" model
- Different network for each degree r

Controlling oscillations in high-order Discontinuous Galerkin schemes using artificial viscosity tuned by neural networks, by Discacciti, Hesthaven and R.; 2019 (submitted).

1D Euler equations: Shu-Osher

 $T_f = 1.8, \quad h = 10/200$

1D Euler equations: Shu-Osher

 $T_f = 1.8, \quad h = 10/200$

1D Euler equations: Shu-Osher

$$T_f = 1.8, \quad h = 10/200, \quad r = 4$$

2D KPP equations: Rotating wave

$$f(u) = (\sin u, \cos u), \quad T_f = 1, \quad h = 4\sqrt{2}/120, \quad r = 4$$

2D KPP equations: Rotating wave

2D Euler equations: Riemann Problem config. 12 (r = 3)

Learning *p*-adaption

Idea of *p*-adaption

Idea of *p*-adaption

Idea of *p*-adaption

In each element: $u_i^h(x) = \sum_{l=0}^{p_{max}} \hat{u}_l^i \phi_l(x)$ Adapt *P*: $u_i^h(x) = \sum_{l=0}^{p_i} \hat{u}_l^i \phi_l(x), \ 0 \le p_i \le p_{max}$

Existing methods:

- p-refinement indicator based on a posteriori estimator [Naddei et al., JCP, 2019]
- Dynamic p-adaption based on flow gradients [Burbeau and Sagaut, Comp. Fluids, 2005; Kubatko et al., Comp. Meth. App. Mech. Engg., 2009]

Dependent on problem specific parameters

MLP based *p* refinement for a pre-defined *p*_{max}:

Input: Full modal coefficients of 3-cell patch

$$\boldsymbol{X} = [\hat{u}_0^{i-1}, ..., \hat{u}_{p_{max}}^{i-1}, \ \hat{u}_0^{i}, ..., \hat{u}_{p_{max}}^{i}, \ \hat{u}_0^{i+1}, ..., \hat{u}_{p_{max}}^{i+1}] \in \mathbb{R}^{3(p_{max}+1)}$$

• Output: $\hat{\mathbf{Y}} \in \mathbb{R}^{p_{max}+2}$, where

$$egin{array}{lll} \hat{\mathbf{Y}}_j, \ 0 \leq j \leq oldsymbol{p}_{max} & \longrightarrow & ext{order } oldsymbol{p}_j \ (ext{smooth}) \ \hat{\mathbf{Y}}_{oldsymbol{p}_{max+1}} & \longrightarrow & ext{discontinuity} \end{array}$$

MLP based *p* refinement for a pre-defined *p*_{max}:

Input: Full modal coefficients of 3-cell patch

$$\boldsymbol{X} = [\hat{u}_0^{i-1}, ..., \hat{u}_{p_{max}}^{i-1}, \ \hat{u}_0^{i}, ..., \hat{u}_{p_{max}}^{i}, \ \hat{u}_0^{i+1}, ..., \hat{u}_{p_{max}}^{i+1}] \in \mathbb{R}^{3(p_{max}+1)}$$

• Output:
$$\hat{\mathbf{Y}} \in \mathbb{R}^{p_{max}+2}$$
, where

$$egin{array}{lll} \hat{\mathbf{Y}}_{j}, \ 0 \leq j \leq oldsymbol{p}_{max} & \longrightarrow & ext{order} \ oldsymbol{p}_{j} \ (ext{smooth}) \ \hat{\mathbf{Y}}_{oldsymbol{p}_{max+1}} & \longrightarrow & ext{discontinuity} \end{array}$$

For *p_{max}* = 3:

- MLP with 5 hidden layers of width 20 each.
- Trained on samples generated from polynomials and generalized (linear) Riemann data.

Euler equations: Shu-Osher

Euler equations: Shu-Osher

$$T_f = 1.8, \quad N = 400$$

Euler equations: Shu-Osher

Euler equations: Blastwave

Euler equations: Blastwave

$$T_f = 0.036, \quad N = 400$$

Euler equations: Blastwave

Table: Computational cost for the Blast Waves problem. Unit of cost: second (s).

	total	p-adaption	residual	limiter	time-stepping
p3	155.17	0	31.68	116.26	6.44
p-adaptive	246.12	113.98	14.69	113.52	3.34

Table: Computational cost for the Shu-Osher problem. Unit of cost: second (s).

	total	p-adaption	residual	limiter	time-stepping
p3	101.76	0	21.00	76.20	4.05
p-adaptive	165.72	75.57	11.10	75.88	2.71

Local smoothening for global schemes

Fourier spectral methods

Assuming periodic boundary conditions on [0, L]

$$u(x,t) \approx u_h(x,t) = \sum_{n=-N}^{N} \tilde{u}_n(t) \exp\left(i \ n \ 2\pi \frac{x}{L}\right) \quad \longrightarrow \quad \text{global}$$

Define 2N + 1 collocation points

$$x_j = \frac{L}{2N+1}j, \ j = 0, ...2N$$

Solve for

 $\frac{d\mathbf{u}(t)}{dt} + \mathbf{D}\mathbf{u}(t) = \mathbf{0}$ where $\mathbf{u}(t) = [u_h(x_0, t), ..., u_h(x_{2N}, t)]^\top$.

Handling Gibbs oscillations:

- Add hyper-viscosity
 - Second-order: cures oscillations but smears solution
 - High-order: better accuracy but local oscillations remain
- Post-processing exponential filter same issue as above
- Use Fourier-Padé reconstruction oscillations still persist

Handling Gibbs oscillations:

- Add hyper-viscosity
 - Second-order: cures oscillations but smears solution
 - High-order: better accuracy but local oscillations remain
- Post-processing exponential filter same issue as above
- Use Fourier-Padé reconstruction oscillations still persist

A simpler approach using MLPs

$$rac{\mathrm{d} \mathbf{u}(t)}{\mathrm{d} t} + \mathbf{D} \mathbf{u}(t) = \mathbf{D}[\mu \otimes \mathbf{D} \mathbf{u}]$$

where μ varies locally based on local-regularity

Evaluate viscosity as a classification problem [Klöckner et al., 2011; Yu et al., 2018]

The network predicts the local regularity τ based on a seven-point stencil

τ	1	2	3	4
Reg.	Disc.	C0/C1	C1/C2	C2

Evaluate viscosity as a classification problem [Klöckner et al., 2011; Yu et al., 2018]

The network predicts the local regularity τ based on a seven-point stencil

$$\mu = \mu_{max} \begin{cases} 1 - (\tau - 1)/2 & \text{if } 1 \le \tau \le 3 \\ 0 & \text{if } \tau = 4 \end{cases}$$

where $\mu_{max} = \frac{h}{2} \max(|f'(u)|)$.

Network architecture:

- Input: $\mathbf{X} \in \mathbb{R}^7$; Output: $\hat{\mathbf{Y}} \in \mathbb{R}^4$
- 3 hidden layers of width 16 each
- A dropout layer is used for regularization

Training/validation data sets created used functions of varying regularity.

Viscosity used along with a high-order exponential filter

- ▶ order 12 if *τ* = 1, 2, 3
- ▶ order 14 if *τ* = 4

Burgers equation

$$N = 600, T_f = 0.4$$

Burgers equation

Euler equations: Shu-Osher

$$N = 600, T_f = 1.8$$

Euler equations: Shu-Osher

$$N = 600, T_f = 1.8$$

2D Euler equations: Riemann problem config. 12

$$N_x = N_y = 100$$

2D Euler equations: Shock-vortex

$$N_x = N_y = 200$$

- Demonstrated that deep learning can be used as a surrogate – both for classification and regression
- Networks trained (once) offline and then used for any conservation law
- Useful in constructing methods free of problem-dependent parameters
- Need to use domain-knowledge to construct training sets

- Demonstrated that deep learning can be used as a surrogate – both for classification and regression
- Networks trained (once) offline and then used for any conservation law
- Useful in constructing methods free of problem-dependent parameters
- Need to use domain-knowledge to construct training sets

Troubled-cell detector: what next?

- Extension to 3D
- Network for general hybrid meshes how to handle variable input size?
- Possible to estimate angle of discontinuity?

- Demonstrated that deep learning can be used as a surrogate – both for classification and regression
- Networks trained (once) offline and then used for any conservation law
- Useful in constructing methods free of problem-dependent parameters
- Need to use domain-knowledge to construct training sets

Artificial viscosity: what next?

- Extension to 3D and hybrid grids
- Explore more sophisticated subcell resolution based on network prediction
- Automate learning perhaps using reinforcement learning

- Demonstrated that deep learning can be used as a surrogate – both for classification and regression
- Networks trained (once) offline and then used for any conservation law
- Useful in constructing methods free of problem-dependent parameters
- Need to use domain-knowledge to construct training sets

p-adaption: what next?

- Extension to higher-dimensions and hybrid grids
- ► Use network for *hp*-adaption

- Demonstrated that deep learning can be used as a surrogate – both for classification and regression
- Networks trained (once) offline and then used for any conservation law
- Useful in constructing methods free of problem-dependent parameters
- Need to use domain-knowledge to construct training sets

Local viscosity for global methods: what next?

- Test on non-uniform grids
- Explore similar ideas for ROM.

Don't replace but enhance existing numerical frameworks with deep networks

* Don't replace but enhance existing numerical frameworks with deep networks

