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Motivation

▶ Efficient, mathematically sound numerical algorithms for solving problems.

▶ Often these methods contain computational bottlenecks.

▶ Idea: Replace bottleneck by deep learning toolbox.

Deep learning-based numerical enhancements: a synergistic approach!
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Hyperbolic conservation laws

Consider the PDE (in 1D for simplicity)

∂u(x, t)

∂t
+

∂f(u(x, t))

∂x
= 0

u(x, 0) = u0(x)

▶ Shallow water equations

▶ Euler equations

▶ MHD equations

Non-linearity of f
=⇒

Discontinuities in finite time
=⇒

Consider weak (distributional)
solutions

Weak solutions need not be
unique!
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Hyperbolic conservation laws

Consider the PDE (in 1D for simplicity)

∂u(x, t)

∂t
+

∂f(u(x, t))

∂x
= 0

u(x, 0) = u0(x)

▶ Shallow water equations

▶ Euler equations

▶ MHD equations

Assume PDE is equipped with entropy-entropy flux pair
(
η(u), q(u)

)
satisfying

∂uq(u) = v⊤∂uf(u)

v(u) = ∂uη(u) → (entropy variables)

Entropy condition: To pick a physically relevant weak solution

∂η(u)

∂t
+

∂q(u)

∂x
≤ 0

Existence, uniqueness of solutions for scalar conservation laws [Kruzkov, 1970].
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Finite difference schemes

Consider the one-dimensional setting (d = 1). Discretize (uniformly) the domain
Ω =

⋃
i Ii, where

Ii = [xi− 1
2
, xi+ 1

2
] = [xi −

h

2
, xi +

h

2
]

Consider the semi-discrete finite difference scheme

dui(t)

dt
+

1

h

(
fi+ 1

2
− fi− 1

2

)
where:

ui → approximation of u(xi, t)

fi+ 1
2
→ consistent, conservative numerical flux at xi+ 1

2

Interested in schemes satisfying a discrete entropy condition.
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

fi+ 1
2
= f∗,2p

i+ 1
2

− 1

2
Ri+ 1

2
Λi+ 1

2
JzKi+ 1

2

satisfying the discrete entropy condition

dη(ui)

dt
+

1

h

(
qi+ 1

2
− qi− 1

2

)
≤ 0

where qi+ 1
2

is a consistent numerical entropy flux.
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

fi+ 1
2
= f∗,2p

i+ 1
2

− 1

2
Ri+ 1

2
Λi+ 1

2
JzKi+ 1

2

f∗,2p
i+ 1

2

is a 2p-th order entropy conservative central flux [Lefloch et al., 2002] that leads

to a satisfaction of a discrete entropy equality

dη(ui)

dt
+

1

h

(
q∗i+ 1

2
− q∗i− 1

2

)
= 0

Can be constructed provided a second-order entropy conservative flux is available.
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

fi+ 1
2
= f∗,2p

i+ 1
2

− 1

2
Ri+ 1

2
Λi+ 1

2
JzKi+ 1

2

Ri+ 1
2
→ matrix of right eigenvectors of ∂uf(u)

Λi+ 1
2
→ non-negative diagonal matrix of depending on eigenvalues of ∂uf(u)

These are evaluated at some averaged solution state at xi+ 1
2

.
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

fi+ 1
2
= f∗,2p

i+ 1
2

− 1

2
Ri+ 1

2
Λi+ 1

2
JzKi+ 1

2

At each xi+ 1
2

:

▶ Define the (locally) scaled entropy variables zj = R⊤
i+ 1

2
vj .

▶ Use cell values of z to reconstruct (component-wise) polynomials
zi(x),zi+1(x) in the cells Ii, Ii+1 respectively.

▶ Evaluate the interface values and jump at xi+ 1
2

:

z−
i+ 1

2
= zi(xi+ 1

2
), z+

i+ 1
2
= zi+1(xi+ 1

2
), JzKi+ 1

2
= z+

i+ 1
2
− z−

i+ 1
2

▶ In smooth regions
JzKi+ 1

2
∼ O(hk)
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TeCNO schemes

A special class of arbitrary high-order entropy stable schemes [Fjordholm et al., 2012]
with the flux

fi+ 1
2
= f∗,2p

i+ 1
2

− 1

2
Ri+ 1

2
Λi+ 1

2
JzKi+ 1

2

Most importantly, the reconstruction needs to satisfy the sign property.

Sign property [Fjordholm et al., 2012]

A reconstruction algorithm used is said to satisfy the sign property if the following
condition holds (component-wise) at xi+ 1

2

sign(JzKi+ 1
2
) = sign(∆zi+ 1

2
)

where ∆zi+ 1
2
= zi+1 − zi.

xi xi+1xi+1
2

Zi

Zi+1

xi xi+1xi+1
2

Zi

Zi+1
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Reconstructions satisfying the sign property

Only a handful reconstruction are known to have this property!

Second-order reconstruction with minmod limiter

z−
i+ 1

2
= vi +

1

2
minmod(∆zi+ 1

2
,∆zi− 1

2
)

z+
i+ 1

2
= vi+1 −

1

2
minmod(∆zi+ 3

2
,∆zi+ 1

2
)

where

minmod(a, b) =

{
sign(a)min (|a|, |b|), if sign(a) = sign(b)

0, otherwise

ENO interpolation [Fjordholm et al., 2013]
Construct k-th degree polynomial by adaptively choosing the stencil.

Third-order weighted ENO (WENO) interpolation
SP-WENO [Fjordholm and R., 2016], SP-WENOc [R., 2018].

Limited polynomial reconstruction [Cheng and Nie, 2016; Cheng, 2019]
Quadratic/cubic polynomial + limiter.
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ENO vs WENO

ENO idea: To construct a polynomial zi(x) in cell Ii, consider k stencils (each with
k cells) and pick the stencil where the polynomial would be the smoothest, i.e.,
away from discontinuities.

Disadvantages:
▶ Consider 2k − 1 cells but finally only use k cells.

▶ Accuracy issues due to linear instabilities [Rogerson and Meiburg, 1990].

WENO idea: Weighted combination of all k-th order candidate polynomials in
ENO to achieve (2k − 1)-th order accuracy.

Goals: Weights of WENO should:

▶ Give (2k − 1)-th order accuracy in smooth regions.

▶ Adapt near discontinuities.

▶ Ensure the sign property is satisfied.
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Third-order SP-WENO

i + 3/2i + 1/2 i + 5/2i - 1/2i - 3/2

i + 1 i + 2ii - 1

Reconstruction from the left: Using candidate stencils {xi, xi+1} and {xi−1, xi}

z−
i+ 1

2
= w0z

(0)
i (xi+ 1

2
) + w1z

(1)
i (xi+ 1

2
)

Reconstruction from the right: Using candidate stencils {xi, xi+1} and
{xi+1, xi+2}

z+
i+ 1

2
= w̃0z

(0)
i+1(xi+ 1

2
) + w̃1z

(1)
i+1(xi+ 1

2
)
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i + 3/2i + 1/2 i + 5/2i - 1/2i - 3/2

i + 1 i + 2ii - 1

Reconstruction from the left: Using candidate stencils {xi, xi+1} and {xi−1, xi}

z−
i+ 1

2
= w0z

(0)
i (xi+ 1

2
) + w1z

(1)
i (xi+ 1

2
)
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z+
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(0)
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2
) + w̃1z
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i+1(xi+ 1

2
)
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Third-order SP-WENO

i + 3/2i + 1/2 i + 5/2i - 1/2i - 3/2

i + 1 i + 2ii - 1

Need to pick weights w0, w1, w̃0, w̃1 such that:

▶ Consistency:

w0 + w1 = 1, w̃0 + w̃1 = 1, w0, w1, w̃0, w̃1 ≥ 0.

▶ Satisfy the sign property, i.e.,

w̃0(1− θ−) + w1(1− θ+) ≥ 0

where the jump ratios are

θ− =
∆zi+ 3

2

∆zi+ 1
2

=
zi+2 − zi+1

zi+1 − zi
, θ+ =

∆zi− 1
2

∆zi+ 1
2

=
zi+2 − zi+1

zi+1 − zi

▶ Negation symmetry: The weights remain unchanged if z 7→ −z.
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Third-order SP-WENO: Issues

Two variants of SP-WENO were hand-crafted [Fjordholm and R., 2016; R., 2018]
satisfying:

▶ All the above properties

▶ Third-order accuracy for smooth solutions

However when used with TeCNO schemes, lead to spurious Gibbs oscillations
near discontinuities.

Reason: Reconstructions can result in a jump JzKi+ 1
2
≈ 0. Thus

f∗,2p
i+ 1

2

− 1

2
Ri+ 1

2
Λi+ 1

2
JzKi+ 1

2

reduces to−−−−−→ f∗,2p
i+ 1

2

(central flux)

i.e., no dissipation!
This is okay in smooth regions, but not near discontinuities.
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Strategy: Use a deep neural network to predict the WENO weights such that

▶ All important properties are strongly imposed.

▶ Learn from data how to correctly reconstruct near smooth regions and
discontinuities.

▶ Achieve this a model agnostic manner.

Learning WENO for entropy stable schemes to solve conservation laws
Charles, R

arXiv:2403.14848
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DSP-WENO

Key ingredients:
▶ Enough to determine w̃0 and w1

▶ Feasible region R ∈ [0, 1]2: if (w̃0, w1) ∈ R then
■ Sign property holds
■ Third-order accuracy in smooth regions.

▶ Values of θ+ and θ− create 6 cases

▶ In each case, R is a convex polygon with 5 vertices {νj}5j=1 in [0, 1]2.

Goal: Design a network that estimated the convex weights {αj}5j=1 for the vertices
such that

w̃0 =

5∑
j=1

αjνj
1 w1 =

5∑
j=1

αjνj
2

leads to accurate WENO reconstructions for both smooth and discontinuous
functions.
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DSP-WENO

Reconstructed
values

NETWORK

WENO
weights

Vertices

4 cell center
values

Network trained by minimizing the (left and right) interface mismatch error∣∣∣z−
i+ 1

2
− z(x−

i+ 1
2
)
∣∣∣+ ∣∣∣z+

i+ 1
2
− z(x+

i+ 1
2
)
∣∣∣

averaged over all training samples.
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DSP-WENO

Network architecture: Feedforward network with 3 hidden layers of with 5 each.

Training dataset: Samples generated using the following functions

No. Type z(x) Parameters
1 Smooth ax3 + bx2 + cx+ d a, b, c, d ∈ U[−10, 10]
2 Smooth (x− a)(x− b)(x− c) + d a, b, c, d ∈ U[−2, 2]
3 Smooth sin (aπx+ b) a, b ∈ U[−2, 2]

4 Discontinuous

{
ax+ b if x ≤ 0.5

cx+ d if x > 0.5
a, b, c, d ∈ U[−5, 5]

50,000 smooth samples and 50,000 discontinuous samples created.

No solutions to conservation laws used!
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Numerical results

▶ TeCNO scheme with fourth-order entropy conservative flux f∗,4
i+ 1

2

.

▶ Third-order SSP-RK3 [Gottlieb et al, 2001] to integrate semi-discrete scheme.

▶ Reconstructions considered:
■ Second-order ENO-2 (4 cells per xi+ 1

2
)

■ Third-order ENO-3 (6 cells per xi+ 1
2

)

■ Third-order SP-WENO (4 cells per xi+ 1
2

)

■ Third-order SP-WENOc (4 cells per xi+ 1
2

)

■ New third-order DSP-WENO (4 cells per xi+ 1
2

)
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Linear advection: Smooth data

Solving ∂tu+ ∂xu = 0 on [−π, π] till T = 0.5 with periodic BC and
Test 1: u0 = sin(x)
Test 2: u0 = sin4(x)

N ENO3 SP-WENO SP-WENOc DSP-WENO
L1
h L1

h L1
h L1

h
Error Rate Error Rate Error Rate Error Rate

Te
st

1

100 3.23e-5 - 6.90e-5 - 6.80e-5 - 1.66e-4 -
200 4.04e-6 3.00 7.65e-6 3.17 7.48e-6 3.18 3.58e-5 2.21
400 5.05e-7 3.00 8.29e-7 3.20 8.17e-7 3.20 4.57e-6 2.97
600 1.50e-7 3.00 2.26e-7 3.20 2.23e-7 3.20 1.35e-6 3.02
800 6.31e-8 3.00 8.72e-8 3.31 8.60e-8 3.31 5.72e-7 2.97

1000 3.23e-8 3.00 4.21e-8 3.27 4.15e-8 3.26 2.95e-7 2.97

Te
st

2

100 1.48e-3 - 1.52e-3 - 1.46e-3 - 1.87e-3 -
200 1.98e-4 2.91 1.68e-4 3.18 1.68e-4 3.12 2.61e-3 2.84
400 2.58e-5 2.94 1.79e-5 3.23 1.78e-5 3.23 3.35e-5 2.96
600 8.25e-6 2.81 4.69e-6 3.31 4.70e-6 3.29 9.59e-6 3.08
800 4.64e-6 2.00 1.81e-6 3.31 1.80e-6 3.33 3.93e-6 3.10

1000 3.46e-6 1.31 8.64e-7 3.32 8.61e-7 3.31 2.03e-6 2.96

Note:
▶ Deterioration of accuracy with ENO3 in Test 2
▶ SP-WENO and SP-WENOc have accuracy > 3 – jump vanishing
▶ DSP-WENO more dissipative but third-order
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Linear advection: Shape

Solved on [0, 1.4] till T = 1.4 with periodic BC

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

(a)

Exact Soln ENO2 ENO3 SP-WENO SP-WENOc DSP-WENO

0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

0.80

0.85

0.90

0.95

1.00

1.05

1.10

u

(b)
Under/overshoots with SP-WENO and SP-WENOc
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Euler equations

The full 3D model:

∂

∂t

 ρ
ρu
E

+∇ ·

 ρu
pI+ ρ(u⊗ u)

(E + p)u

 = 0,

Total energy

E = ρ

(
|u|2

2
+ e

)
.

with the internal energy e given by EOS

e =
p

(γ − 1)ρ

where γ = 1.4 is the ratio of specific heats.
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Euler equations: 1D (modified) shock tube

Solved on [0, 1] till T = 0.2 with Neumann BC. N = 400

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

de
ns

ity

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

ve
lo

cit
y

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

pr
es

su
re

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

0.50 0.55 0.60 0.65 0.70 0.75 0.80
x

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

de
ns

ity

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

0.60 0.70 0.80
x

1.3

1.4

1.5

1.6

1.7

1.8

ve
lo

cit
y

Ref. Soln
ENO3
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0.60 0.70 0.80
x

0.40
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Ref. Soln
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Euler equations: 1D shock-entropy test

Solved on [−5, 5] till T = 1.8 with Neumann BC. N = 400

4 2 0 2 4
x

1

2

3

4

5

de
ns

ity

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

4 2 0 2 4
x

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

ve
lo

cit
y

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

4 2 0 2 4
x

2
4
6
8

10
12
14
16

pr
es

su
re

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

0.0 0.5 1.0 1.5 2.0 2.5
x

3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00

de
ns

ity

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

4 3 2 1 0 1 2 3
x

2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1

ve
lo

cit
y

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO

4 3 2 1 0 1 2 3
x

8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

pr
es

su
re

Ref. Soln
ENO3
SP-WENO
SP-WENOc
DSP-WENO
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Euler equations: 1D Lax shock tube

Solved on [−5, 5] till T = 1.3 with Neumann BC. N = 200

4 2 0 2 4
x

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

de
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4 2 0 2 4
x

0.5
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1.5

2.0

2.5

3.0

3.5
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es
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Ref. Soln
ENO3
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1.75 2.25 2.75 3.25 3.75
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1.4

1.5
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1.7

1.8
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Euler equations: 2D Riemann problem (conf. 12)

Solved on [0, 1]× [0, 1] till T = 0.25 with Neumann BC using 400× 400 cells
E

N
O

3

S
P

-W
E

N
O

S
P

-W
E

N
O

c

D
S

P
-W

E
N

O
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Euler equations: 2D Riemann problem (conf. 12)

Solution along x = 0.89 and x = 0.5
Reference solution using ENO3 on 1200× 1200 mesh.

0.5 0.6 0.7 0.8 0.9
y

1.0

1.2

1.4

1.6

1.8

2.0

de
ns

ity

(a)

Reference ENO3 SP-WENO SP-WENOc DSP-WENO

0.3 0.4 0.5 0.6 0.7 0.8
y

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

de
ns

ity

(b)
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Conclusion

▶ Demonstrated a data-driven approach to learn reconstruction algorithms.

▶ Trained a network to learn WENO weights.

▶ Strong embedding of structural properties, such as the sign property.

▶ Network agnostic of any specific conservation model – single network for all
models.

▶ Performs better than existing SP-WENO variants.

▶ Next steps: higher-order DSP-WENO, reconstruction on unstructured grids,
hybrid schemes.

Questions?
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Burgers equation: isolated shock wave

Solving ∂tu+ ∂xu
2/2 = 0 on [−1, 1] till T = 0.5 with Neumann BC. N = 100

1.0 0.5 0.0 0.5 1.0
x

1

0

1

2

3

u

(a)

Exact Soln ENO2 ENO3 SP-WENO SP-WENOc DSP-WENO

0.30 0.40 0.50
x

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

u

(b)

Under/overshoots with all methods! But better profile with DSP-WENO prior to the
shock.
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