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Forward and inverse problems

“We call two problems inverses of one another if the formulation of each involves
all or part of the solution of the other. Often, for historical reasons, one of the two
problems has been studied extensively for sometime, while the other is newer and

not so well understood. In such cases, the former is called the direct problem,
while the latter is called the inverse problem.”

– Joseph Keller, 1976
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Forward and inverse problems

Consider the phenomena of heat flow through some material.

Temperature 

sensors


(N in each direction)

Modelled using the heat equation:

∂u(s, t)

∂t
− κ∆u(s, t)) = 0

u(s, 0) = u0(s)
where

u(s, t) → temperature at location s at time t

u0(s) → initial temperature at location s

κ → thermal conductivity of material

Forward problem F : Given u0(s) at the sensor nodes determine u(s, T )
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Forward and inverse problems

Challenges with inverse problems:

▶ Inverse map is not well posed.

▶ Noisy measurements from direct problem.

▶ Need to encode prior knowledge about inferred field.

Uncertainty in inferred field critical for applications with high-stake decisions.

Example: Medical imaging to detect liver lesions
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Bayesian framework

Assume x ∈ ΩX and y ∈ ΩY are modeled by random variables X and Y .

AIM: Given a measurement Y = y approximate the conditional distribution

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)

PX (x) : prior distribution

PY (y) : evidence

PY |X (y|x) : likelihood of observing y given x

PX|Y (x|y) : posterior distribution given y

We want to generate samples:

sampler
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Bayesian framework: challenges

▶ Posterior sampling techniques, such as Markov Chain Monte Carlo, are
prohibitively expensive when dimension of X is large.

▶ Characterization of priors for complex data

For example, x data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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How do we learn a target (unknown) distribution PX and sample
from it?



Generative adversarial network (GAN)

Designed by Goodfellow et al. (2014).

Two networks with some suitable architectures.

Generator network g:

▶ Generates fake samples x̃

▶ g : ΩZ → ΩX .

▶ Latent variable z ∈ ΩZ ⊂ RNz .

▶ z ∼ PZ simple distribution, e.g. Gaussian.

▶ Nz ≪ Nx.

Critic network d:

▶ Distinguishes fake samples from real

▶ d : ΩX → R.

▶ x ∼ PX .

▶ d(x) large for x ∼ PX , small otherwise.

For a metric M on P(ΩX), define the loss
Π(g, d) = M(PX , g#PZ).

Solve the MinMax problem
(g

∗
, d

∗
) = argmin

g
argmax

d
Π(g, d) −→ Adversarial Training
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Wasserstein GAN

Proposed by Arjovsky et al. (2017), using the Wasserstein-1 metric

W1(P1, P2) = inf
γ∈J(P1,P2)

E
(x1,x2)∼γ

[∥x1 − x2∥]

Using the Kantorovich-Rubinstein dual characterization, we have

W1(P1, P2) = sup
∥f∥Lip≤1

(
E

x∼P1

[f(x)]− E
x∼P2

[f(x)]

)

Set the loss function as

Π(g, d) = E
x∼PX

[d(x)]− E
z∼PZ

[d(g(z))]

Under the constraint ∥d∥Lip ≤ 1, find

d∗(g) = argmax
d

Π(g, d) =⇒ Π(g, d∗(g)) = W1(PX , g#PZ)

Thus, for the optimal generator g∗

g∗ = argmin
g

W1(PX , g#PZ)

If for a sequence {g∗n}, W1(PX , g∗
n#PZ) → 0 =⇒ weak convergence of measures

E
z∼PZ

[ℓ(g∗
n(z))] → E

x∼PX

[ℓ(x)] , ∀ ℓ ∈ Cb(ΩX)

−→ moments converge.
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Wasserstein GAN

In practice, at the discrete level

▶ Generate/obtain the finite dataset S = {xi : xi ∈ ΩX , 1 ≤ i ≤ n}.

▶ Compute expectations using Monte Carlo

E
x∼PX

[d(x)] ≈ 1

n

n∑
i=1

d(xi), E
z∼PZ

[d(g(z))] ≈ 1

n

n∑
i=1,zi∼PZ

d(g(zi))

▶ Iterative solve the MinMax problem:
■ Take N (typically N ≥ 4) optimization steps for d
■ Take 1 optimization step for g

▶ Add a gradient penalty term (Gulrajani, 2017) to constraint d to be 1-Lipschitz

λ
1

n

n∑
j=1

(∥∇xd(xj)∥ − 1)2
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What a GAN can do

Results by Karras et al. (2018) from NVIDIA.
CELEBA-HQ dataset, Nz = 512, Nx = 1024× 1024× 3 = 3.14× 106

−→ dimension reduction!
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But we want to learn a conditional distribution PX|Y (x|y).
Can we still use a GAN?



Conditional generative adversarial network (cGAN)

Learning distributions conditioned on another field.

z

g x~

Generator

d

Critic

x~

x

y y

y

Generator network:

▶ g : ΩZ × ΩY → ΩX .

▶ Also takes measurement y as
input.

▶ (x,y) sampled from true PXY

Critic network:

▶ d : ΩX × ΩY → R.

▶ d tries to detect fake samples.

▶ d(x,y) large for real x, small
otherwise.
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Conditional generative adversarial network (cGAN)

▶ Given Y = y and z ∼ PZ we get a random variable

Xg = g(Z,y), with disitribution P g
X|Y = g(.,y)#PZ .

▶ Objective function

Π(g, d) = E
(x,y)∼PXY

z∼PZ

[
d(x,y)− d

(
g(z,y),y

)]
▶ g and d determined (with constraint ∥d∥Lip ≤ 1) through

(g∗, d∗) = argmin
g

argmax
d

Π(g, d)

▶ Adler et al. (2018) proved that the minmax problem is equivalent to

g∗ = argmin
g

E
y∼PY

[
W1(PX|Y , P g

X|Y )
]

where W1 is the Wasserstein-1 distance.
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Posterior sampling using cGANs

Steps:

▶ Acquire samples {x1, ...,xN}, where xi are sampled from PX .

▶ For each xi acquire the measurement yi (using F). yi will be a sample from
PY |X

▶ Construct the paired set S = {(x1,y1), ..., (xN ,yN )}. (xi,yi) can be seen as
sampled from true joint PXY .

▶ Train a cGAN on S.

▶ For a new test measurement y, generate samples using g∗.

▶ Evaluate statistics using Monte Carlo

g*

La
te

nt
 v

ar
ia

bl
e
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How well does it work for physics-based problems?



Inverse heat equation

▶ We want to solve the inverse heat conduction problem.

▶ Assume the space has Nx = 28× 28 = 784 sensors.

▶ X: Initial temperature at the sensors (an image).

▶ Y : Noisy final temperature at the sensors (also an image).

▶ We assume κ = 0.2

▶ (x,y) pairs obtained by numerically solving the forward problem F and
artificially adding noise.

▶ We need to assume some prior distribution on X.

The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse
problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.
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Inverse heat equation: MNIST prior on X

Assuming X to given by MNIST handwritten digits: u0 takes the value 4.0 on the
digit and 0.0 everywhere else.

Training samples:
x y (clean) y

0.0

2.0

4.0

0.0

1.2

2.4

-0.9

0.9

2.7 x y (clean) y

0.0

2.0

4.0

0.0

1.1

2.2

-1.0

0.9

2.9

x y (clean) y

0.0

2.0

4.0

0.0

0.7

1.4

-1.1

0.4

2.0 x y (clean) y

0.0

2.0

4.0

0.0

1.2

2.3

-0.8

1.0

2.8

▶ Trained a network with dimension Nz = 100 for latent variable Z. Note that
Nx = 784.

▶ We don’t have clean y in real problems!
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Inverse heat equation: testing

Testing trained generator g∗. Monte Carlo statistics with 800 z samples.
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MRI brain extraction problem

▶ MRI images of the head used in several downstream task:
■ Quantifying grey and white matter
■ Monitoring neurological diseases, e.g., Alzheimer’s
■ Estimating brain athrophy

▶ MRI images need to undergo "skull stripping": eliminating everything other
than the brain.

▶ Manual process can be tedious and subjective.

▶ Existing algorithms do not quantify uncertainty.
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MRI brain extraction problem

Setup

▶ Y : Image of the head: original MRI

▶ X: Image of the brain (what we infer)

▶ Each image has shape 256× 192 =⇒ 49, 152 pixels

▶ Publicly available NFBS paired dataset used for training (no explicit F)

▶ cGAN trained with latent dimension Nz = 256.

Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks (A.
Moazami, D. Ray, D. Pelletier, A. A. Oberai); preprint 2022.
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MRI brain extraction problem

Testing on unseen head images
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De-raining images

▶ Removal of weather artifacts (rain, mist, etc) is critical in autonomous
driving/aviation systems.

▶ Y : Rainy image

▶ X: De-rained/clean image

▶ Sufficient real clean/rainy images not available.

▶ Synthetic pairs generated through another GAN.

▶ cGAN trained on images of size 256× 256 =⇒ 65, 536 pixels.

▶ Latent dimension Nz = 100.
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De-raining images

Testing on real rainy images
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Conclusion

▶ Conditional GANs can be used to approximate and sample from conditional
distributions.

▶ Required paired data to train – supervised learning model.

▶ What do we gain?
■ Ability to represent and encode complex data.

■ Dimension reduction since Nz ≪ Nx.
Nx Nz Dim. compression

Inverse heat equation 784 100 7.84
Brain extraction 49,152 256 192
De-raining 65,536 100 655.36

■ Once trained, sampling from cGAN is quick and easy.

▶ Algorithm tested for many other physics-based and medical applications.

Questions?
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