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Motivation: Forward and inverse problems

Consider a forward problem

F : x ∈ Ωx 7→ y ∈ Ωy, Ωx ∈ RNx , Ωy ∈ RNy

Temperature  
sensors 

(N in each direction)

For example the heat conduction PDE:

∂u(s, t)

∂t
− κ∆u(s, t)) = 0

u(s, 0) = u0(s)
where

u(s, t) → temperature at location s at time t

u0(s) → initial temperature at location s

κ → thermal conductivity of material

Forward problem F : Given u0(s) at the sensor nodes determine u(s, T )
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Bayesian inference

Challenges with inverse problems:

▶ Inverse map is not well posed.

▶ Noisy measurements.

▶ Need to encode prior knowledge about x.

Bayesian framework: x and y modelled by random variables X and Y .

AIM: Given a measurement Y = y approximate the conditional (posterior)
distribution

PX|Y (x|y)

and sample from it.

sampler
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Bayesian inference: challenges

▶ Posterior sampling techniques, such as Markov Chain Monte Carlo, are
prohibitively expensive when dimension of X is large.

▶ Characterization of priors for complex data

For example, x data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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Conditional Generative Adversarial Network (cGAN)

▶ Proposed by Mirza et al. (2014)

▶ Learning distributions conditioned on another field (PX|Y )

▶ Comprises two neural networks, g and d.

z

g x~

Generator

d

Critic

x~

x

y y

y

Generator network:

▶ g : Ωz × Ωy → Ωx.

▶ Latent variable Z ∼ PZ , e.g.
N(0, I). Also Nz ≪ Nx.

▶ (x,y) sampled from true PXY

Critic network:

▶ d : Ωx × Ωy → R.

▶ d tries to detect fake samples.

▶ d(x,y) large for real x, small
otherwise.
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A Novel Wasserstein cGAN ∗

▶ Objective function

Π(g, d) = E
(X,Y )∼PXY

Z∼PZ

[
d(X,Y )− d

(
g(Z,Y ),Y

)]
▶ Define

Lip = {f : Ωx × Ωy → R s.t. f is 1-Lipschitz in x and y}

▶ Train cGAN: Find g∗ and d∗ by solving the minmax problem

d∗(g) = argmax
d∈Lip

Π(g, d)

g∗ = argmin
g

Π(g, d∗(g)).

* Solution of physics-based inverse problems using conditional generative adversarial networks with full
gradient penalty (R., Esandi, Dasgupta, Oberai); CMAME, 2023.
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A Novel Wasserstein cGAN

▶ We can show
Π(g, d∗(g)) = W1(PXY , P g

XY )

where P g
XY = P g

X|Y PY . Thus,

g∗ = argmin
g

W1(PXY , P g
XY )

▶ If we can find the sequence {(g∗
n, d

∗
n)}n such that

lim
n→∞

Π(g∗
n, d

∗
n) = lim

n→∞
W1(PXY , P

g∗
n

XY ) = 0,

then we weakly converge to the true joint density, P g∗
n

XY

weak−→ PXY

⇐⇒ lim
n→∞

E
P

g∗
n

XY

[ℓ(X,Y )] = E
PXY

[ℓ(X,Y )] ∀ ℓ ∈ Cb(Ωx × Ωy).
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A Novel Wasserstein cGAN

But our goal is to approximate the conditional density, or rather estimate the
conditional expectations

E
PX|Y

[q(X)|y] .

The following result shows us how to do this robustly:

Theorem: R., Esandi, Dasgupta, Oberai (2023)
Let ŷ be such that PY (ŷ) ̸= 0 and q ∈ Cb(Ωx). Then, given ϵ > 0 (and under some
mild assumptions), there exists σ > 0 and an integer N such that∣∣∣∣∣ E

PX|Y
[q(X)|ŷ]− E

P
σ,n
XY

[q(X)]

∣∣∣∣∣ < ϵ ∀ n ≥ N,

where Pσ,n
XY (x,y) = P

g∗
n

X|Y (x|y)PYσ (y) and PYσ (y) ≡ N(ŷ, σ2I).

Implication: Instead of feeding the measurement ŷ to g∗, feed ŷ + δy where
δy ∼ N(0, σ2I)
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Approximating posterior expectations

Steps:

▶ Acquire samples Sx = {x1, ...,xN}, where xi ∼ P
prior
X .

▶ Use forward map F to generate dataset S = {(x1,y1), ..., (xN ,yN )}
▶ Train a cWGAN on S.

▶ For a test ŷ, generate samples by passing z and “perturbed" y samples through g∗.

▶ Approximate expectation using Monte Carlo.

E
X∼PX|Y

[ℓ(X)] ≈
1

K

K∑
i=1

ℓ(g∗(z(i),y(i))), z(i) ∼ PZ , y(i) ∼ N(ŷ, σ2I)

g*
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e
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Simple 1D problems

Consider the pair of 1D random variables defined by:

Tanh + Γ : x = tanh(y) + γ where γ ∼ Γ(1, 0.3) and y ∼ U(−2, 2)

Bimodal : x = (y + w)1/3 where y ∼ N (0, 1) and w ∼ N (0, 1)

Swissroll : x = 0.1t sin(t) + 0.1w, y = 0.1t cos(t) + 0.1v, t = 3π/2(1 + 2h),

where h ∼ U(0, 1), w ∼ N (0, 1) and v ∼ N (0, 1)
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Simple 1D problems
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Solving the inverse heat conduction equation

Goal: Infer initial temp. field from noisy final temp. field
Assuming x to given by a rectangular inclusion and Nx = Ny = 28× 28 = 784

Training samples:

cWGANs trained using latent dimension Nz = 3!
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Solving the inverse heat conduction equation

Test sample, whose reference mean and SD are available

SD map can be used to quantify uncertainty locally

y x
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4.0
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Solving the inverse heat conduction equation

L2 error in mean and SD
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Predicting arrival times for wildfire spread∗

▶ Substantial increase in wildfire activity around the globe.

▶ Complicated physics coupling atmosphere and wildfire dynamics.

▶ Correct initial state of wildfire and atmosphere variables required for
successful simulations.

▶ Mandel et al. (2012) found that
■ Precise wildfire history during initial spread – key for model initialization.

■ History well represented by arrival time map.

Data assimilation problem: Given satellite measurements of active fire during
initial spread, determine high resolution fire arrival map for initial period.

* Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models with Satellite Data for
Initializing Wildfire Forecasts (Shaddy, R., Faruell, Calaza, Mandel, Haley, Hilburn, Mallia, Kochanski,
Oberai); preprint on arXiv, 2023.
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Predicting arrival times for wildfire spread

▶ Synthetic training data generated using WRF-SFIRE.
▶ Nx = Ny = 512× 512 = 262, 144.
▶ Trained cWGAN Nz = 100.
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Sample 1 Sample 2 Sample 3 Sample 4

Fire arrived first in the darkest regions of the plot
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Predicting arrival times for wildfire spread

▶ Tested on real wildfire data for fires in California between 2020 - 2022.

▶ Data collected from Suomi-NPP satellite, detections 2-4 times a day.

▶ High confidence measurements (top row); high+nominal confidence
measurements (bottom row)

(a) Bobcat
IR Time 56:15

(d) Mineral
IR Time 51:15

(c) Oak
IR Time 53:46

(b) Tennant
IR Time 54:04

IR Time: Number of hours since start of fire.
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Predicting arrival times for wildfire spread

▶ 200 realization for each type of input measurement.

▶ Weighted combination of realizations

xi = 0.2× xhigh
i + 0.8× xhigh+nom

i

used to compute pixel-wise mean and SD

(a) Bobcat (c) Oak(b) Tennant (d) Mineral
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Predicting arrival times for wildfire spread

Estimate ignition time based on smallest arrival time compared with California
Department of Forestry and Fire Protection (CAL FIRE) reporting and another
SVM based method by Farguell et al. (2021).

Wildfire CAL FIRE cWGAN SVM cWGAN Offset SVM Offset
Tennant 23:07 23 : 48 21:11 41 minutes 1 hour 56 minutes

Oak 21:10 21 : 30 20:45 20 minutes 25 minutes
Mineral 23:40 23 : 04 27:53 36 minutes 4 hours 13 minutes

See preprint for additional details and comparisons (eg. F-score, false alarm ratio,
etc)
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Conclusion

▶ A cWGAN algorithm for Bayesian inference

▶ What do we gain?
■ Ability to represent and encode complex prior data.

■ Dimension reduction since Nz ≪ Nx.

■ Sampling from cGAN is quick and easy.

■ Uncertainty quantification in terms of SD.

▶ Need (x,y) pairs to train – supervised algorithm.

▶ Convergence theory that leads to a robust sampling algorithm.

▶ Currently testing algorithm on several other physics-based and medical
applications.

Questions?
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Simple 1D problems: role of σ

Errors between PX|Y and P g
X|Y :

Can expect benefit of Full-GP approach on multi-modal problems!
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WRF-SFIRE simulation initialization

▶ 20 simulations in total

▶ 2 day fire spread over flat terrain with a uniform fuel type of brush.

▶ Initial wind profile: logarithmic profile up to 2 km, constant wind speed above
2 km, uniform prescription in one direction

▶ Wind magnitude 10m from the surface varied randomly from a uniform
distribution between 0− 5 m s−1.
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WRF-SFIRE: dataset

Strategy:
▶ Generated 20 fire simulations using WRF-SFIRE

▶ Data augmented by rotations and translations to generate 10,000
high-resolution arrival maps xi ∈ R512×512

▶ Corresponding measurements yi ∈ R512×512 obtained by coarsening and
occluding.

▶ 8000 training samples, 2000 validation samples (to tune hyper-parameters)
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