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Motivation: data-driven assist

Theoretically sound techniques available for
I Solving differential equations
I Optimization and control
I Uncertainty quantification
I Reduced order modelling
I Inverse problems
I ...
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Motivation: p-adaptation

Approximate

Using finite-element based methods, in each element Ei :

uh
i (x) =

Np∑
j=1

ûi
jφj (x), update/solve coef. ûi

j

Adapt p: uh
i (x) =

Npi∑
j=1

ûi
jφl (x), 0 ≤ pi ≤ pmax =⇒ lower cost

Issue: Existing methods use problem-dependent parameters.
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ûi
jφj (x), update/solve coef. ûi
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Hyperbolic conservation laws

∂u(x, t)
∂t

+∇ · f(u(x, t)) = 0

u(x,0) = u0(x)

I Shallow water equations
I Euler equations
I MHD equations

Discontinuous Galerkin schemes + deep learning:
I Troubled-cell detector (classification): [Ray et al., 2018; Ray et al., 2019;

Beck et al., 2020; Feng et al., 2020]

I Artificial viscosity (regression): [Discacciati et al., 2020]

Advantage:
I Universal strategy – free from problem-dependent parameters.
I More bang for the buck!

AIM: Train a network to predict the local order
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NN-based p-adapter

Datasets:
I Choose a function u(x) with known regularity.
I Interpolate on a mesh:

I Extract modal coefficients from local stencils.
I Create the input vector and label:

X = [u0
1 , ..., u

0
Np
, u1

1 , ..., u
1
Np
, u2

1 , ..., u
2
Np
, u3

1 , ..., u
3
Np

]> ∈ R4Np

Y ∈ {0, ..., p} (Classification)

E0

E1

E2

E3
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NN based p-adapter (pmax = 3)

Training set:

Function Target p Samples
Constants 0 135,000

P1 1 140,400
P2 2 140,400
P3 3 56,160

a1 + a2 sin(a3πx) + a4 cos(a5πy) 3 42,120
a1 + a2 sin(a3π(a4x + a5y)) 3 42,120

556,200

Validation set:

Function Target p Samples
Constants 0 21,620

P1 1 23,374
P2 2 23,374
P4 3 6,032
P5 3 6,032
P6 3 6,032

a1 + sin(a2πx) cos(a3πy) + sin(a4πx) cos(a5πy) 3 6,032
92,496
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NN based p-adapter (pmax = 3)

I Ensemble training to find suitable hyper-parameters of
feedforward network (144 nets.)

I Best network:
Depth 6
Width 20
Activation Leaky ReLU (α = 1e − 3)
Regularization L2 (λ = 1e − 7)
Learning rate 1e − 3
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Training Acc. (99.89%)
Validation Acc. (97.12%)

Training Acc. = 99.89%

Validation Acc. = 97.12%
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Numerical results

I Demonstration with pmax = 3 =⇒ X ∈ R40

I Modal DG scheme
I Compressible Euler equations:

u =


ρ
ρv1
ρv2
E

 , f1 =


ρv1

Π + ρv2
1

ρv1v2
(E + Π)v1

 , f2 =


ρv2
ρv1v2

Π + ρv2
2

(E + Π)v2


E = ρ

(
|v|2

2
+ e

)
, e =

Π

(γ − 1)ρ
, γ = 1.4

ρ −→ fluid density

v = (v1, v2) −→ velocity

Π −→ pressure

E −→ total energy

e −→ internal energy
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Advecting shapes

v = (1,0), Π = 1, K = 57,492, adaptation based on ρ

Density Order

D. Ray A Deep Learning Framework for p-Adaptation 8



Advecting shapes

v = (1,0), Π = 1, K = 57,492, adaptation based on ρ

Density Order

D. Ray A Deep Learning Framework for p-Adaptation 8



Advecting shapes

CPU times (minutes):

Scheme Adaptation Flux+Source Time-stepping Total
Full P3 0.0 8,377.1 73.3 8,450.4
NN Adapt. 79.6 2,882.7 23.3 2,985.6

Speed up ≈ 2.83!

Scheme L1 Error L∞ Error
Full P3 2.29e − 4 2.97e − 2
NN Adapt. 2.44e − 4 3.29e − 2
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Subsonic flow past NACA-0012 airfoil

Mach Number = 0.5, a.o.a = 2◦, K = 10382

Order
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Subsonic flow past NACA-0012 airfoil

CPU times (minutes):

Scheme Adaptation Flux+Source Time-stepping Total
Full P3 0.0 14,261.6 126.5 14,388.1
NN Adapt. 148.0 10,493.0 83.3 10,724.3

Speed up ≈ 1.34

Mesh is adapted!
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Double Mach reflection

K = 80000, using NN-based troubled-cell indicator

Density

Order
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Double Mach reflection

Full P3

NN Adapt.

CPU times (minutes):

Scheme Adaptation Flux+Source Limiting Time-stepping Total
Full P3 0.0 7,304.7 67.7 65.6 7,438.1
NN Adapt. 75.0 2,174.9 62.0 19.8 2,331.7

Speed up ≈ 3.19!
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Concluding remarks

I Demonstrated that networks can be trained to predict local order.

I Network trained offline – one network for all problems.

I No additional tuning required.

Next steps:
I Comparison with existing p-adapting algorithms [Burbeau et al., 2005;

Naddei et al., 2019]

I hp-adaption – can we get a single network?

I Extension to hybrid grids and 3D.

Questions?
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Confusion matrices

Training set:

Validation set:
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Training histograms
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Additional runtime details

I All training and simulations performed on the EPFL Fidis cluster,
using Intel R© Broadwell processors @2.6GHz

I Network training: 144 nets trained on 48 CPUs, approx. 12 hrs.

I Shapes: 84 CPUs, NACA: 28 CPUs, Double Mach: 28 CPUs

I Simulation times exclude MPI wait times (need dynamic
partitioning)
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