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Introduction

We consider at the pore-scale:
I Immiscible components, e.g. oil and water.

I Effect of surfactants.

I Partially miscible components, e.g. methane and decane.

Diffuse-interface model:
I Based on thermodynamics.

I Assume a zone of phase-transition (opposed to sharp interfaces).

I Equations derived from a single energy functional.
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Outline

I Surfactant loaded Cahn-Hilliard (SurCH) model

I Key properties

I Numerical scheme

I Computational results

I Partially miscible two-phase flow (Lu Lin)

I Conclusion and future scope
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SurCH

Unknowns:
I Order parameter for immiscible phases c : Ω× [0,T ] 7→ [−1, 1].
I Surfactant volume fraction s : Ω× [0,T ] 7→ [0, 1].
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SurCH

Unknowns:
I Order parameter for immiscible phases c : Ω× [0,T ] 7→ [−1, 1].
I Surfactant volume fraction s : Ω× [0,T ] 7→ [0, 1].

Helmholtz free-energy formulation :

F(c, s) =

∫
Ω

(Fc + Fs + Fs,c)

Fc = Φ(c) +
Cn2

2
|∇c|2 (bulk phases)

Fs = α2Ψ(s), (surfactant)

Fs,c = −α3sΦ(c)︸ ︷︷ ︸
adsorption

at
interface

+α4sc2︸ ︷︷ ︸
solubility

in
bulk

(interaction)

Φ(c) =
1
4

(1− c2)2︸ ︷︷ ︸
Ginzburg-Landau

, Ψ(s) = s log(s) + (1− s) log(1− s) + log(2)︸ ︷︷ ︸
Flory-Huggins
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SurCH

Chemical potentials:

µc =
δF
δc
, µs =

δF
δs
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SurCH

Chemical potentials:

µc =
δF
δc
, µs =

δF
δs

Minimization of free energy and conservation of mass:

∂tc −
1

Pec
∇ · (Mc∇µc) +∇ · (cv) = 0,

∂ts −
1

Pes
∇ · (Ms∇µs) +∇ · (sv) = 0,

µc − Φ′(c) + Cn2∆c + α3sΦ′(c)− 2α4cs = 0,

µs − α2Ψ′(s) + α3Φ(c)− α4c2 = 0

where

Solenoidal velocity field : v
Peclet numbers : Pec , Pes

Mobility functions : Mc , Ms = s(1− s)
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SurCH: Properties

Conservation of mass: For a closed system, i.e., v
∣∣
∂Ω

= 0∫
Ω

c(x , t)dΩ =

∫
Ω

c0(x)dΩ,

∫
Ω

s(x , t)dΩ =

∫
Ω

s0(x)dΩ.

Energy decay: For the non-advective system v ≡ 0

dF
dt

=

∫
Ω

δF
δc
∂tc +

∫
Ω

δF
δs
∂ts 6 0.

We aim to develop a scheme that preserves these properties.
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SurCH: Properties

Choice of energy functional based on the work by Engblom et al. (2013):
I Model simplicity
I Stability
I Recovery of adsorption isotherms

Alternate formulations exist in literature: James et al. (2004); Teigen et al.
(2011); Laradji et al. (1992); Komura et al. (1997); Sman et al. (2006); Liu et
al. (2010); Zhu et al. (2018, 2019, 2020); ...
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SurCH: Numerical scheme

I Ω discretized using conforming cuboidal elements of size h.
I Interior Penalty Discontinuous Galerkin (IPDG) in space to solve for c, s

(directly) and µc , µs (indirectly).
I Semi-implicit in time with convex-concave splitting of Φ(c).
I v obtained via an a priori solve of the incompressible Navier-Stokes.
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SurCH: Numerical scheme

I Ω discretized using conforming cuboidal elements of size h.
I Interior Penalty Discontinuous Galerkin (IPDG) in space to solve for c, s

(directly) and µc , µs (indirectly).
I Semi-implicit in time with convex-concave splitting of Φ(c).
I v obtained via an a priori solve of the incompressible Navier-Stokes.

Mass conservation: By construction.

Discrete energy decay: Define the discrete free-energy at t = tn as

Fn
h =(Φ(cn

h ), 1) +
Cn2

2
aD(cn

h , c
n
h ) + α2(Ψ(sn

h), 1)− α3(Φ(cn
h ), sn

h) + α4((cn
h )2, sn

h).

where
aD(. , .) → discrete diff. op. (. , .) → L2 inner prod.

Assuming v ≡ 0 and sn
h > 0, we can prove

Fn+1
h 6 Fn

h ∀ n > 1.

A discontinuous Galerkin method for a diffuse-interface model of immiscible two-phase flows with soluble surfactant;

D. Ray, C. Liu, B. Riviere; (to appear in Comp. Geosci.)

D. Ray DG schemes for pore-scale flows 6



SurCH: Non-advective experiments

Adsorption isotherms:
Consider a planar interface with notations i → interface, b → bulk. Assume
I Dilute solution regime, i.e., sb � 1.
I c profile independent of s at equilibrium.

Then, at equilbrium

c(x) = tanh

(
x − x0√

2Cn

)
, x0 = 0.5

s(x) =
sb

sb + sq(x)
, sq(x) = exp

[
− 1
α2

(
α3Φ(c(x)) + α4(1− c(x)2)

)]
Specializing to the interface (ci = 0)

si =
sb

sb + sq,i︸ ︷︷ ︸
Langmuir
isotherm

, sq,i = exp

[
− 1
α2

(α3

4
+ α4

)]
︸ ︷︷ ︸

Langmuir
adorption constant

.
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SurCH: Non-advective experiments

Adsorption isotherms:
I Fixed: Pec = Pes = 1.0, α3 = 1.0, α4 = 0.25, h = 1/80, Cn = 4h.

I Initial shifted profile s(x) =
sb

sb+sq (x−0.2)
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SurCH: Non-advective experiments

Spinal-drop interaction:

c0(x , y)
∣∣
Ek

= 0.2 + 0.001ωk , ωk ∈ rand([−1, 1]),

s0(x , y) =
1
2

(
0.5− 0.3 tanh

(
rx − 0.15
√

2Cn

))
, rx =

√
(x − 0.5)2 + (y − 0.5)2

c s
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SurCH: Trapped oil drop

I Domain: h = 1/200, rpipe = 0.1, rthroat = 0.015.

velocity magnitude

Initial c
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SurCH: Trapped oil drop

In the absence of surfactant
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SurCH: Trapped oil drop

Flood with constant surfactant s0 = 0.05.

Surfactant
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SurCH: Trapped oil drop

Spontaneous shrinkage of drops [Yue et al., 2007]:
Drops in the Cahn-Hilliard framework will shrink and disappear if

r < rc =

(
21/6

3π
VCn

)1/4

≈ 0.0923

where

V ≈ 0.1218 pore volume, Cn = 5× 10−3

For our experiment r = 0.04.
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SurCH: Flow through Berea sandstone (h=1/160)

I Pore space initially saturated with phase c = −1 and s0 = 10−3.
I Constant injection of second phase c = 1 and s = 0.2 at x = 0.

rock (gray) velocity field

c at t = 1 s at t = 1
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SurCH: Flow through Berea sandstone (h=1/160)

2D slices parallel to flow
Order parameter Surfactant

z = 0.2

z = 0.5

D. Ray DG schemes for pore-scale flows 15



Partially miscible model

Two components (for instance methane and decane), with molar density n1,2

and molar massM1,2

∂ni

∂t
+∇ · (niv−Mi∇µi ) = 0, 1 6 i 6 2,

µi =
∂Ψ

∂ni
−

s∑
j=1

cij ∆nj , 1 6 i 6 2,

∂(ρv)

∂t
+∇ · (v⊗ (ρv−

2∑
j=1

MjMj∇µj︸ ︷︷ ︸
coupling term

))−∇ · τ = −
2∑

j=1

nj∇µj ,

with

τ = 2Gε(v) + (K − 2
3

G)(∇ · v)I, ε(v) =
1
2

(∇v + (∇v)T ), ρ =
s∑

j=1

Mjnj .

Ψ : derived from Peng-Robinson EOS
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Partially miscible model: Numerical scheme

I IPDG in space: unknowns are discontinuous piecewise linears:
n1h, n2h, vh.

I Semi-implicit in time with convex-concave splitting for Ψ.
I Mass balance equations and momentum equations solved iteratively.
I Discrete total energy

Ek
tot,h = (Ψ(nk

1h, n
k
2h), 1) +

Cn2

2

2∑
i,j=1

cijaD(nk
ih, n

k
jh) +

ReCaCn
2

(ρk , vk
h · vk

h).

We can prove (fully-implicit scheme):

Ek
tot,h 6 Ek−1

tot,h, ∀k > 1.
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Partially miscible model: Droplet scenario

Simulate the dynamical evolution of a square liquid droplet in the center of a
square domain.

t = 0

Setup:
I Two components:

methane (n1), decane (n2)
I temperature: 320K
I initial molar density: mol/m3

inner phase outer phase
n1 3513.2 7133.9
n2 3814.6 26.5
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Partially miscible model: Droplet scenario

Simulate the dynamical evolution of a square liquid droplet in the center of a
square domain.

t = 20 t = 50 t = 100 t = 200
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Partially miscible model: Droplet scenario

Simulate the dynamical evolution of a square liquid droplet in the center of a
square domain.

t = 0 equilibrium
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Partially miscible model: Droplet scenario

Simulate the dynamical evolution of a square liquid droplet in the center of a
square domain.

0 100 200 300 400 500 600 700 800 900 1000

Number of time steps

1.354

1.355

1.356

1.357

1.358

1.359

1.36

1.361

1.362

T
o

ta
l 
E

n
e

rg
y
 (

J
)

10-4

D. Ray DG schemes for pore-scale flows 18



Partially miscible model: Equilibrium composition
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Conclusion

I Developed an IPDG scheme for the SurCH model
I Recovers (Langmuir) adsorption isotherms.
I Conservative and energy stable.
I Captures surfactant dynamics.

I Developed an IPDG scheme for partially miscible model
I Captures expected equilibrium beviour.
I Energy stable (empirically).

Future directions:
I Two-way coupling for SurCH.

I Include a wettability model.

I Use flux and slope limiter to control bulk-shift and spurious oscillations.

I Higher-order time-marching strategy ensuring energy decay.
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SurCH: boundary conditions

We consider the following boundary conditions

c = cin, on Γin × (0,T ),

s = sin, on Γin × (0,T ),

∇c · n = 0 on (Γwall ∪ Γout)× (0,T ),

Mc∇µc · n = 0 on ∂Ω× (0,T ),

Ms∇µs · n = 0 on ∂Ω× (0,T ),

where cin : Γin × (0,T ) 7→ [−1, 1] and sin : Γin × (0,T ) 7→ [0, 1].
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SurCH: Simulation parameters

Mc = 1

Spinodal-drop: h = 1/100, Pec = Pes = 100, α2 = α3 = α4 = 1, τ = 10−3,
Cn = h

Trapped oil drop: h = 1/200, Pec = Pes = 100, α2 = α3 = α4 = 1,
τ = 10−3, Cn = h

Trapped oil drop: h = 1/160, Pec = Pes = 100, α2 = α3 = α4 = 1,
τ = 5× 10−3, Cn = h

Non-linear system solved using Newton’s method (GMRES + Jacobi
preconditioner)
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Partially miscible model: Stability

Changing initial composition yields the same equilibrium state

t = 0

Initial composition: perturb n1 by 20%
and take average for n2

inner phase outer phase
n̂1 4215.84 6431.26
n̂2 1920.55 1920.55
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Partially miscible model: Stability

equilibrium
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