A variationally mimetic operator network

Deep Ray
Department of Mathematics
University of Maryland, College Park
Email: deepray@umd.edu
Website: deepray.github.io
Jointly with Dhruv Patel, Michael Abdelmalik, Assad A. Oberai \& Thomas J. R. Hughes

Supported by ARO grant W911NF2010050.

ICMTA-2024

Motivation

- Problems of interest solved using finite difference/volume, finite element, spectral methods, ...
- Many-query applications need many calls to the solver: e.g.
- Uncertainty quantification
- PDE-constrained optimization
- Inverse problems
- Single solve expensive for large-scale applications \rightarrow multiple solves $\mathcal{O}\left(10^{5}\right)$ prohibitively expensive!
- Need to design efficient, robust surrogates.
- Recent interest in deep learning-based surrogates \rightarrow focus of this talk!
- Deep learning with neural networks
- Solving PDEs using deep learning
- Variationally Mimetic Operator Network (VarMiON)
- Error estimates
- Numerical results
- Conclusion

Deep neural network

A neural network is a parametrized mapping

$$
N N_{\psi}: \Omega_{x} \rightarrow \Omega_{y}
$$

typically formed by alternating composition

$$
N N_{\psi}:=\rho \circ \mathcal{A}_{\psi_{L+1}}^{(L+1)} \circ \rho \circ \mathcal{A}_{\psi_{L}}^{(L)} \circ \rho \circ \mathcal{A}_{\psi_{L-1}}^{(L-1)} \circ \cdots \circ \rho \circ \mathcal{A}_{\psi_{1}}^{(1)}
$$

where

$$
\psi=\left\{\boldsymbol{\psi}_{k}\right\}_{k=1}^{L} \longrightarrow \text { trainable weights and biases of the network }
$$ $\mathcal{A}_{\psi_{k}}^{(k)} \longrightarrow$ parametrized affine transformation $\rho \longrightarrow$ non-linear activation function

Deep neural network

A neural network is a parametrized mapping

$$
N N_{\psi}: \Omega_{x} \rightarrow \Omega_{y}
$$

typically formed by alternating composition

$$
N N_{\psi}:=\rho \circ \mathcal{A}_{\psi_{L+1}}^{(L+1)} \circ \rho \circ \mathcal{A}_{\psi_{L}}^{(L)} \circ \rho \circ \mathcal{A}_{\psi_{L-1}}^{(L-1)} \circ \cdots \circ \rho \circ \mathcal{A}_{\psi_{1}}^{(1)}
$$

where

$$
\begin{aligned}
\psi=\left\{\boldsymbol{\psi}_{k}\right\}_{k=1}^{L} & \longrightarrow \text { trainable weights and biases of the network } \\
\mathcal{A}_{\boldsymbol{\psi}_{k}}^{(k)} & \longrightarrow \text { parametrized affine transformation } \\
\rho & \longrightarrow \text { non-linear activation function }
\end{aligned}
$$

Usage:

- Let \boldsymbol{x} and \boldsymbol{y} be related in some manner, say $\boldsymbol{y}=\mathcal{F}(\boldsymbol{x})$.
- We are only given $\mathcal{S}=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)\right\}_{i=1}^{N}$.
- $N N_{\psi}$ can be used to learn \mathcal{F}.

Deep neural network

Consider a suitable measure

$$
\mu: \Omega_{x} \times \Omega_{y} \times \Omega_{x} \times \Omega_{y} \rightarrow \mathbb{R}
$$

s.t. $\mu\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{x}, N N_{\psi}(\boldsymbol{x})\right)$ is the error/discrepancy between $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{S}$ and $\left(\boldsymbol{x}, N N_{\boldsymbol{\psi}}(\boldsymbol{x})\right)$.

Define the loss/objective function

$$
\Pi(\boldsymbol{\psi})=\frac{1}{N} \sum_{i=1}^{N} \mu\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}, \boldsymbol{x}_{i}, N N_{\psi}\left(\boldsymbol{x}_{i}\right)\right)
$$

Solve the optimization problem

$$
\psi^{*}=\underset{\psi}{\arg \min } \Pi(\psi)
$$

Then $N N_{\psi^{*}} \approx \mathcal{F}$
Also need to tune network hyper-parameters:

- Width • Depth (L) • Activation function ρ • Optimizer
- Loss function • Dataset

Consider the generic PDE:

$$
\mathcal{L}(u(\boldsymbol{x}))=f(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in \Omega
$$

- Solution approximated by a network $\widehat{u}(\boldsymbol{x} ; \boldsymbol{\psi})$ with parameters ψ.
- Minimize PDE residual at collocation points $\left\{\boldsymbol{x}_{i}\right\}$ (Lagaris et al., 2000): Solve

$$
\boldsymbol{\psi}^{*}=\underset{\boldsymbol{\psi}}{\arg \min } \Pi(\boldsymbol{\psi}), \quad \Pi(\boldsymbol{\psi})=\frac{1}{N} \sum_{i=1}^{N}\left\|\mathcal{L}\left(\widehat{u}\left(\boldsymbol{x}_{i} ; \boldsymbol{\psi}\right)\right)-f\left(\boldsymbol{x}_{i}\right)\right\|^{2}
$$

- Rediscovered as Physics Informed Neural Nets (PINNs) with deeper structures (Raissi et al., 2019).
- However, solves one instance of the PDE - must be retrained if f changes.

Solving PDEs using DL

We are interested in approximating the solution operator

$$
\mathcal{S}: \mathcal{F} \longrightarrow \mathcal{V}, \quad \mathcal{S}(f)=u(. ; f)
$$

- Network-based operator learning with shallow networks [Chen \& Chen, 1995].
- DeepONets: extension to deeper architectures [Lu et al., 2021]
- Comprise two subnetworks: the trunk (basis) and the branch (basis).

Solving PDEs using DL

We are interested in approximating the solution operator

$$
\mathcal{S}: \mathcal{F} \longrightarrow \mathcal{V}, \quad \mathcal{S}(f)=u(. ; f)
$$

- Network-based operator learning with shallow networks [Chen \& Chen, 1995].
- DeepONets: extension to deeper architectures [Lu et al., 2021]
- Comprise two subnetworks: the trunk (basis) and the branch (basis).
- Neural operators - an alternate strategy to approximate \mathcal{S}
- Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...

Solving PDEs using DL

We are interested in approximating the solution operator

$$
\mathcal{S}: \mathcal{F} \longrightarrow \mathcal{V}, \quad \mathcal{S}(f)=u(. ; f)
$$

- Network-based operator learning with shallow networks [Chen \& Chen, 1995].
- DeepONets: extension to deeper architectures [Lu et al., 2021]
- Comprise two subnetworks: the trunk (basis) and the branch (basis).
- Neural operators - an alternate strategy to approximate \mathcal{S}
- Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...
- This talk: Operator Networks that mimic (approximate) variational form* of the PDE.
[* Variationally Mimetic Operator Networks; Patel, Ray, Abdelmalik, Hughes, Oberai; CMAME, 2024]
- Consider a generic linear elliptic PDE:

$$
\begin{aligned}
\mathcal{L}(u(\boldsymbol{x}) ; \theta(\boldsymbol{x})) & =f(\boldsymbol{x}), & & \forall \boldsymbol{x} \in \Omega, \\
\mathcal{B}(u(\boldsymbol{x}) ; \theta(\boldsymbol{x})) & =\eta(\boldsymbol{x}), & & \forall \boldsymbol{x} \in \Gamma_{\eta}, \\
u(\boldsymbol{x}) & =0, & & \forall \boldsymbol{x} \in \Gamma_{g},
\end{aligned}
$$

where $f \in \mathcal{F} \subset L^{2}(\Omega), \eta \in \mathcal{N} \subset L^{2}\left(\Gamma_{\eta}\right), \theta \in \mathcal{T} \subset L^{\infty}(\Omega)$.

- The variational formulation: find $u \in \mathcal{V} \subset H_{g}^{1}$ such that $\forall w \in \mathcal{V}$,

$$
a(w, u ; \theta)=(w, f)+(w, \eta)_{\Gamma_{\eta}}
$$

- The solution operator is

$$
\begin{aligned}
\mathcal{S}: \mathcal{X}=\mathcal{F} \times \mathcal{T} \times \mathcal{N} & \longrightarrow \mathcal{V} \subset H_{g}^{1} \\
(f, \theta, \eta) & \mapsto u(. ; f, \theta, \eta)
\end{aligned}
$$

This mapping can be non-linear in θ.

- Evaluate approximate solution in finite-dimensional space $\mathcal{V}^{h}=\operatorname{span}\left\{\phi_{i}(\boldsymbol{x}): 1 \leq i \leq q\right\}$.
- Discrete weak formulation: find $u^{h} \in \mathcal{V}^{h}$ such that $\forall w^{h} \in \mathcal{V}^{h}$,

$$
a\left(w^{h}, u^{h} ; \theta^{h}\right)=\left(w^{h}, f^{h}\right)+\left(w, \eta^{h}\right)_{\Gamma_{\eta}}
$$

- Any function $v^{h} \in \mathcal{V}^{h}$ can be written as

$$
v^{h}(\boldsymbol{x})=\boldsymbol{V}^{\top} \boldsymbol{\Phi}(\boldsymbol{x}), \quad \boldsymbol{V}=\left(v_{1}, \cdots, v_{q}\right)^{\top}, \quad \boldsymbol{\Phi}(\boldsymbol{x})=\left(\phi_{1}(\boldsymbol{x}), \cdots, \phi_{q}(\boldsymbol{x})\right)^{\top} .
$$

Plugging this into discrete weak form gives...

- Linear system of equations,

$$
\boldsymbol{K}\left(\theta^{h}\right) \boldsymbol{U}=\boldsymbol{M} \boldsymbol{F}+\widetilde{\boldsymbol{M}} \boldsymbol{N}
$$

where the matrices are given by

$$
K_{i j}\left(\theta^{h}\right)=a\left(\phi_{i}, \phi_{j} ; \theta^{h}\right), \quad M_{i j}=\left(\phi_{i}, \phi_{j}\right), \quad \widetilde{M}_{i j}=\left(\phi_{i}, \phi_{j}\right)_{\Gamma_{\eta}} \quad 1 \leq i, j \leq q
$$

- Discrete solution operator is

$$
\begin{aligned}
& \mathcal{S}^{h}: \mathcal{X}^{h}=\mathcal{F}^{h} \times \mathcal{T}^{h} \times \mathcal{N}^{h} \longrightarrow \mathcal{V}^{h} \\
&\left(f^{h}, \theta^{h}, \eta^{h}\right) \mapsto u^{h}\left(. ; f^{h}, \theta^{h}, \eta^{h}\right)=\boldsymbol{B}\left(f^{h}, \eta^{h}, \theta^{h}\right)^{\top} \boldsymbol{\Phi}
\end{aligned}
$$

where

$$
\boldsymbol{B}\left(f^{h}, \theta^{h}, \eta^{h}\right)=\boldsymbol{U}=\boldsymbol{K}^{-1}\left(\theta^{h}\right)(\boldsymbol{M} \boldsymbol{F}+\widetilde{\boldsymbol{M}} \boldsymbol{N})
$$

VarMiON will mimic this structure!

VarMiON

Evaluate (f, θ, η) at some fixed sensor nodes to get the discrete sample vectors

$$
\widehat{\boldsymbol{F}}=\left(f\left(\widehat{\boldsymbol{x}}_{1}\right), \cdots, f\left(\widehat{\boldsymbol{x}}_{k}\right)^{\top}, \widehat{\boldsymbol{\Theta}}=\left(\theta\left(\widehat{\boldsymbol{x}}_{1}\right), \cdots, \theta\left(\widehat{\boldsymbol{x}}_{k}\right)\right)^{\top}, \widehat{\boldsymbol{N}}=\left(\eta\left(\widehat{\boldsymbol{x}}_{1}^{b}\right), \cdots, \eta\left(\widehat{\boldsymbol{x}}_{k^{\prime}}^{b}\right)^{\top}\right.\right.
$$

VarMiON

The network is comprises several sub-networks with latent dimension p :

VarMiON

The network is comprises several sub-networks with latent dimension p :

- Non-linear branch net: $\widehat{\boldsymbol{\Theta}} \mapsto \boldsymbol{D}(\widehat{\boldsymbol{\Theta}}) \in \mathbb{R}^{p \times p}$

VarMiON

The network is comprises several sub-networks with latent dimension p :

- Non-linear branch net: $\widehat{\boldsymbol{\Theta}} \mapsto \boldsymbol{D}(\widehat{\boldsymbol{\Theta}}) \in \mathbb{R}^{p \times p}$
- Two linear branches with learnable matrices $\boldsymbol{A}, \widetilde{\boldsymbol{A}}$

VarMiON

The network is comprises several sub-networks with latent dimension p :

- Non-linear branch net: $\widehat{\boldsymbol{\Theta}} \mapsto \boldsymbol{D}(\widehat{\boldsymbol{\Theta}}) \in \mathbb{R}^{p \times p}$
- Two linear branches with learnable matrices $\boldsymbol{A}, \tilde{\boldsymbol{A}}$
- Non-linear trunk (basis of VarMiON): $\boldsymbol{x} \mapsto \boldsymbol{\tau}(\boldsymbol{x})=\left(\tau_{1}(\boldsymbol{x}), \cdots \tau_{p}(\boldsymbol{x})\right)^{\top}$

VarMiON

VarMiON operator is

$$
\begin{aligned}
\widehat{\mathcal{S}}: \mathbb{R}^{k} \times \mathbb{R}^{k} \times \mathbb{R}^{k^{\prime}} & \longrightarrow \mathcal{V}^{\tau}=\operatorname{span}\left\{\tau_{i}(\boldsymbol{x}): 1 \leq i \leq p\right\} \\
(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}}) & \mapsto \widehat{u}(. ; \widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})=\boldsymbol{\beta}\left(f^{h}, \eta^{h}, \theta^{h}\right)^{\top} \boldsymbol{\tau}
\end{aligned}
$$

where

$$
\boldsymbol{\beta}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{H}})=\boldsymbol{D}(\widehat{\boldsymbol{\Theta}})(\boldsymbol{A} \widehat{\boldsymbol{F}}+\widetilde{\boldsymbol{A}} \widehat{\boldsymbol{N}})
$$

VarMiON

VarMiON operator is

$$
\begin{aligned}
\widehat{\mathcal{S}}: \mathbb{R}^{k} \times \mathbb{R}^{k} \times \mathbb{R}^{k^{\prime}} & \longrightarrow \mathcal{V}^{\tau}=\operatorname{span}\left\{\tau_{i}(\boldsymbol{x}): 1 \leq i \leq p\right\} \\
(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}}) & \mapsto \widehat{u}(. ; \widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})=\boldsymbol{\beta}\left(f^{h}, \eta^{h}, \theta^{h}\right)^{\top} \boldsymbol{\tau}
\end{aligned}
$$

where

$$
\boldsymbol{\beta}(\widehat{F}, \widehat{\Theta}, \widehat{\boldsymbol{H}})=\boldsymbol{D}(\widehat{\Theta})(\boldsymbol{A} \widehat{F}+\widetilde{\boldsymbol{A}} \widehat{\boldsymbol{N}}) .
$$

Compare this to the discrete solution operator:

$$
\begin{aligned}
\mathcal{S}^{h}: \mathcal{F}^{h} \times \mathcal{T}^{h} \times \mathcal{N}^{h} & \longrightarrow \mathcal{V}^{h} \\
\left(f^{h}, \theta^{h}, \eta^{h}\right) & \mapsto u^{h}\left(. ; f^{h}, \theta^{h}, \eta^{h}\right)=\boldsymbol{B}\left(f^{h}, \eta^{h}, \theta^{h}\right)^{\top} \boldsymbol{\Phi}
\end{aligned}
$$

where

$$
\boldsymbol{B}\left(f^{h}, \theta^{h}, \eta^{h}\right)=\boldsymbol{K}^{-1}\left(\theta^{h}\right)(\boldsymbol{M} \boldsymbol{F}+\widetilde{\boldsymbol{M}} \boldsymbol{N}) .
$$

In comparison with the variational formulation

- Can prove \boldsymbol{D} is the reduced order counterpart of $\boldsymbol{K}^{-1}(p \ll q)$
- While the basis $\boldsymbol{\Phi}$ are fixed, $\boldsymbol{\tau}$ are learned from training data.

In comparison with a vanilla DeepONet

- DeepONet typically has a single nonlinear branch for inputs.
- VarMiON explicitly constructs matrix operators. DeepONet does not.

1. For $1 \leq j \leq J$, consider distinct samples $\left(f_{j}, \theta_{j}, \eta_{j}\right) \in \mathcal{X}$.
2. Obtain the discrete approximations $\left(f_{j}^{h}, \theta_{j}^{h}, \eta_{j}^{h}\right) \in \mathcal{X}^{h}$.
3. Find the discrete numerical solution $u_{j}^{h}=\mathcal{S}^{h}\left(f_{j}^{h}, \theta_{j}^{h}, \eta_{j}^{h}\right)$.
4. Choose output nodes $\left\{\boldsymbol{x}_{l}\right\}_{l=1}^{L}$ to sample the numerical solution $u_{j l}^{h}=u_{j}^{h}\left(\boldsymbol{x}_{l}\right)$.
5. Generate the input vectors ($\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}}_{j}$).
6. Collect input \& output to form training set with $J \times L$ samples

$$
\mathbb{S}=\left\{\left(\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}}_{j}, \boldsymbol{x}_{l}, u_{j l}^{h}\right): 1 \leq j \leq J, 1 \leq l \leq L\right\}
$$

Find the network weights that minimize the loss function

$$
\Pi(\boldsymbol{\psi})=\frac{1}{J} \sum_{j=1}^{J} \Pi_{j}(\boldsymbol{\psi}), \quad \Pi_{j}(\boldsymbol{\psi})=\sum_{l=1}^{L} w_{l}\left(u_{j l}^{h}-\widehat{\mathcal{S}}_{\psi}\left(\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}}_{j}\right)\left[\boldsymbol{x}_{l}\right]\right)^{2} .
$$

where ψ are all the trainable parameters of the VarMiON.

Error Estimates

The generalization error for any $(f, \theta, \eta) \in \mathcal{X}$

$$
\mathcal{E}(f, \theta, \eta):=\|\mathcal{S}(f, \theta, \eta)-\widehat{\mathcal{S}}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})\|_{L^{2}}
$$

Split into four errors:

$$
\begin{aligned}
\mathcal{E}(f, \theta, \eta) \leq & \left\|\mathcal{S}(f, \theta, \eta)-\mathcal{S}\left(f_{j}, \theta_{j}, \eta_{j}\right)\right\|_{L^{2}} \longrightarrow \text { Stability of } \mathcal{S} \\
& +\left\|\mathcal{S}\left(f_{j}, \theta_{j}, \eta_{j}\right)-\mathcal{S}^{h}\left(f_{j}^{h}, \theta_{j}^{h}, \eta_{j}^{h}\right)\right\|_{L^{2}} \longrightarrow \text { Numerical error in generating data } \\
& +\left\|\mathcal{S}^{h}\left(f_{j}^{h}, \theta_{j}^{h}, \eta_{j}^{h}\right)-\widehat{\mathcal{S}}\left(\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}}_{j}\right)\right\|_{L^{2}} \longrightarrow \text { Training error of VarMion } \\
& +\left\|\widehat{\mathcal{S}}\left(\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}_{j}}\right)-\widehat{\mathcal{S}}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})\right\|_{L^{2}} \longrightarrow \text { Stabiilty of VarMiON } \widehat{\mathcal{S}}
\end{aligned}
$$

Error Estimates

Generalization error estimate (Patel et al., 2022)

If $\mathcal{X}:=\mathcal{F} \times \mathcal{T} \times \mathcal{N}$ is compact, the non-linear branch is Lipschitz, i.e.,

$$
\left\|\boldsymbol{D}(\widehat{\boldsymbol{\Theta}})-\boldsymbol{D}\left(\widehat{\boldsymbol{\Theta}}^{\prime}\right)\right\|_{2} \leq L_{D}\left\|\widehat{\boldsymbol{\Theta}}-\widehat{\boldsymbol{\Theta}}^{\prime}\right\|_{2} .
$$

Then, the generalization error can be bounded as

$$
\mathcal{E}(f, \theta, \eta) \leq \mathcal{C}\left(\epsilon_{h}+\epsilon_{s}+\sqrt{\epsilon_{t}}+\frac{1}{k^{\alpha / 2}}+\frac{1}{\left(k^{\prime}\right)^{\alpha^{\prime} / 2}}+\frac{1}{L^{\gamma / 2}}\right)
$$

where

$$
\begin{aligned}
\epsilon_{h} & \rightarrow \text { numerical error in training data } \\
\epsilon_{s} & \rightarrow \text { covering estimate } \\
\epsilon_{t} & \rightarrow \text { training error } \\
\alpha, \alpha^{\prime}, \gamma & \rightarrow \text { quadrature convergence rates }
\end{aligned}
$$

The constant C depends on the stability constants of \mathcal{S} and $\widehat{\mathcal{S}}$.

Steady-state heat conduction

$$
\begin{aligned}
-\nabla \cdot(\theta(\boldsymbol{x}) \nabla u(\boldsymbol{x})) & =f(\boldsymbol{x}), & & \forall \boldsymbol{x} \in \Omega, \\
\theta(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) & =\eta(\boldsymbol{x}), & & \forall \boldsymbol{x} \in \Gamma_{\eta}, \\
u(\boldsymbol{x}) & =0, & & \forall \boldsymbol{x} \in \Gamma_{g} .
\end{aligned}
$$

- Input: thermal conductivity θ, heat sources f, and heat flux η. Output: temperature u.
- Inputs: Gaussian Random Fields.
- Networks with two inputs (θ, f) and three inputs (θ, f, η).
- Compare VarMiON $(p=100)$ and vanilla DeepONet.
- Similar number of network parameters. Identical trunk architecture.
- Robustness: sampling (spatially uniform or random) and trunk functions (ReLU or RBF).

Numerical Example

- 10,000 samples generated using Fenics.
- 9,000 for training/validation and 1,000 for testing.
- Average value of relative L_{2} error reported below.

Case	Model	Number of parameters	Relative L_{2} error
Two input functions with	DeepONet (w/ ReLU trunk)	111,248	1.07 ± 0.39 \%
randomly sampled input	VarMiON(w/ ReLU trunk)	109,013	$\mathbf{0 . 9 3} \pm \mathbf{0 . 2 8} \%$
Two input functions with	DeepONet (w/ ReLU trunk)	49,928	$1.98 \pm 0.79 \%$
uniformly sampled input	VarMiON(w/ ReLU trunk)	46,281	$\mathbf{1 . 0 5} \pm \mathbf{0 . 4 2} \%$
Two input functions with	DeepONet (w/ RBF trunk)	17,911	$1.39 \pm 0.60 \%$
uniformly sampled input	VarMiON(w/ RBF trunk)	17,345	$\mathbf{0 . 6 4} \pm \mathbf{0 . 3 5} \%$
Three input functions with	DeepONet (w/ RBF trunk)	24,543	$5.99 \pm \mathbf{4 . 2 4} \%$
uniformly sampled input	VarMiON(w/ RBF trunk)	23,065	$\mathbf{2 . 0 6} \pm \mathbf{0 . 9 0} \%$

Numerical Example: Three inputs

Density of scaled L_{2} error (RBF trunk and uniform spatial sampling).

Numerical Example: Three inputs

Predictions by VarMiON and DeepONet.

Numerical Example: Comparison with MIONet

MIONet has been proposed [Jin et al., 2022] to handle multiple input functions.
Separate branch for each f_{i}, followed by a Hadamard product

$$
\beta=\left(\beta^{1} \odot \beta^{2} \odot \cdots \odot \beta^{n}\right), \quad u_{\theta}\left(x ; f_{1}, \cdots, f_{n}\right)=\beta^{\top} \tau(x)
$$

Numerical Example: Three inputs

Comparison with MIONet as the number of training samples n is varied

Training dataset size	Model	Relative L_{2} error
$n=1000$	DeepONet	10.23 ± 5.20
	MIONet	88.07 ± 69.68
	VarMiON	$\mathbf{4 . 2 7} \pm \mathbf{2 . 2 3}$
$n=2000$	DeepONet	9.00 ± 5.63
	MIONet	85.03 ± 123.77
	VarMiON	$\mathbf{4 . 0 4} \pm \mathbf{1 . 8 6}$
$n=4000$	DeepONet	7.19 ± 3.75
	MIONet	88.39 ± 62.10
	VarMiON	$\mathbf{2 . 9 0} \pm \mathbf{1 . 5 0}$
$n=6000$	DeepONet	6.28 ± 3.55
	MIONet	82.89 ± 34.19
	VarMiON	$\mathbf{2 . 7 4} \pm \mathbf{1 . 3 1}$

A word on non-linear PDEs

- VarMiON needs to be carefully constructed due to the dependence on the structure of the variational form.
- Have constructed a VarMiON for the regularized Eikonal equation.
- We believe the VarMiON architecture needs to be customized depending on the type of PDE (ongoing work)
- VarMiON: an operator network that mimics variational formulation.
- Takes the form of a reduced order model.
- Precise specification of the branch network - depends on weak form of PDE.
- Error analysis reveals important components - currently investigating training with appropriate Sobolev loss.
- Numerical results point to better and more robust performance.
- Several extensions: other nonlinear operators, physics-informed residuals, time-dependent problems, hyperbolic systems, and specification of geometry.

