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Motivation

▶ Problems of interest solved using finite difference/volume, finite element,
spectral methods, ...

▶ Many-query applications need many calls to the solver: e.g.
■ Uncertainty quantification
■ PDE-constrained optimization
■ Inverse problems

▶ Single solve expensive for large-scale applications → multiple solves O(105)
prohibitively expensive!

▶ Need to design efficient, robust surrogates.

▶ Recent interest in deep learning-based surrogates → focus of this talk!
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Outline

▶ Deep learning with neural networks

▶ Solving PDEs using deep learning

▶ Variationally Mimetic Operator Network (VarMiON)

▶ Error estimates

▶ Numerical results

▶ Conclusion
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Deep neural network

A neural network is a parametrized mapping

NNψ : Ωx → Ωy

typically formed by alternating composition

NNψ := ρ ◦ A(L+1)
ψL+1

◦ ρ ◦ A(L)
ψL

◦ ρ ◦ A(L−1)
ψL−1

◦ · · · ◦ ρ ◦ A(1)
ψ1

where

ψ = {ψk}Lk=1 −→ trainable weights and biases of the network

A(k)
ψk

−→ parametrized affine transformation

ρ −→ non-linear activation function

x1
x2
x3
x4

W x + b
= {W,b}

z1
z2
z3
z4
z5
z6

y1
y2
y3
y4
y5
y6

Usage:

▶ Let x and y be related in some manner, say y = F(x).

▶ We are only given S = {(xi,yi)}Ni=1.

▶ NNψ can be used to learn F .
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Deep neural network

Consider a suitable measure

µ : Ωx × Ωy × Ωx × Ωy → R

s.t. µ(x,y,x, NNψ(x)) is the error/discrepancy between (x,y) ∈ S and
(x, NNψ(x)).

Define the loss/objective function

Π(ψ) =
1

N

N∑
i=1

µ(xi,yi,xi, NNψ(xi))

Solve the optimization problem

ψ∗ = argmin
ψ

Π(ψ)

Then NNψ∗ ≈ F

Also need to tune network hyper-parameters:
• Width • Depth (L) • Activation function ρ • Optimizer
• Loss function • Dataset
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Solving PDEs using deep learning

Consider the generic PDE:

L(u(x)) = f(x), ∀ x ∈ Ω

▶ Solution approximated by a network û(x;ψ) with parameters ψ.

▶ Minimize PDE residual at collocation points {xi} (Lagaris et al., 2000): Solve

ψ∗ = argmin
ψ

Π(ψ), Π(ψ) =
1

N

N∑
i=1

∥L(û(xi;ψ))− f(xi)∥2

▶ Rediscovered as Physics Informed Neural Nets (PINNs) with deeper
structures (Raissi et al., 2019).

▶ However, solves one instance of the PDE – must be retrained if f changes.
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Solving PDEs using DL

We are interested in approximating the solution operator

S : F −→ V, S(f) = u(.; f)

▶ Network-based operator learning with shallow networks [Chen & Chen, 1995].

▶ DeepONets: extension to deeper architectures [Lu et al., 2021]

▶ Comprise two subnetworks: the trunk (basis) and the branch (basis).

▶ Neural operators – an alternate strategy to approximate S

▶ Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel
Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...

▶ This talk: Operator Networks that mimic (approximate) variational form∗ of the
PDE.

[* Variationally Mimetic Operator Networks; Patel, Ray, Abdelmalik, Hughes, Oberai; CMAME, 2024 ]
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Problem Statement

▶ Consider a generic linear elliptic PDE:

L(u(x); θ(x)) = f(x), ∀ x ∈ Ω,

B(u(x); θ(x)) = η(x), ∀ x ∈ Γη,

u(x) = 0, ∀ x ∈ Γg,

where f ∈ F ⊂ L2(Ω), η ∈ N ⊂ L2(Γη), θ ∈ T ⊂ L∞(Ω).

▶ The variational formulation: find u ∈ V ⊂ H1
g such that ∀ w ∈ V,

a(w, u; θ) = (w, f) + (w, η)Γη .

▶ The solution operator is

S : X = F × T ×N −→ V ⊂ H1
g

(f, θ, η) 7→ u(.; f, θ, η)

This mapping can be non-linear in θ.
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Discrete weak formulation

▶ Evaluate approximate solution in finite-dimensional space
Vh = span{ϕi(x) : 1 ≤ i ≤ q}.

▶ Discrete weak formulation: find uh ∈ Vh such that ∀ wh ∈ Vh,

a(wh, uh; θh) = (wh, fh) + (w, ηh)Γη .

▶ Any function vh ∈ Vh can be written as

vh(x) = V ⊤Φ(x), V = (v1, · · · , vq)⊤, Φ(x) = (ϕ1(x), · · · , ϕq(x))
⊤.

Plugging this into discrete weak form gives...
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Discrete weak form

▶ Linear system of equations,

K(θh)U =MF + M̃N

where the matrices are given by

Kij(θ
h) = a(ϕi, ϕj ; θ

h), Mij = (ϕi, ϕj), M̃ij = (ϕi, ϕj)Γη 1 ≤ i, j ≤ q.

▶ Discrete solution operator is

Sh : X h = Fh × T h ×N h −→ Vh

(fh, θh, ηh) 7→ uh(.; fh, θh, ηh) = B(fh, ηh, θh)⊤Φ

where
B(fh, θh, ηh) = U =K−1(θh)(MF + M̃N).

VarMiON will mimic this structure!
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VarMiON

Evaluate (f, θ, η) at some fixed sensor nodes to get the discrete sample vectors

F̂ = (f(x̂1), · · · , f(x̂k)
⊤, Θ̂ = (θ(x̂1), · · · , θ(x̂k))

⊤, N̂ = (η(x̂b
1), · · · , η(x̂b

k′)⊤

Γ!

Γ"

Ω
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VarMiON

The network is comprises several sub-networks with latent dimension p:

▶ Non-linear branch net: Θ̂ 7→D(Θ̂) ∈ Rp×p

▶ Two linear branches with learnable matrices A, Ã

▶ Non-linear trunk (basis of VarMiON): x 7→ τ (x) = (τ1(x), · · · τp(x))⊤

Sum

Dot

MatVecProd

Nonlinear branch

Linear branch

Linear branch

Nonlinear trunk
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VarMiON

VarMiON operator is

Ŝ : Rk × Rk × Rk′
−→ Vτ = span{τi(x) : 1 ≤ i ≤ p}

(F̂ , Θ̂, N̂) 7→ û(.; F̂ , Θ̂, N̂) = β(fh, ηh, θh)⊤τ

where
β(F̂ , Θ̂, Ĥ) =D(Θ̂)(AF̂ + ÃN̂).

Compare this to the discrete solution operator:

Sh : Fh × T h ×N h −→ Vh

(fh, θh, ηh) 7→ uh(.; fh, θh, ηh) = B(fh, ηh, θh)⊤Φ

where
B(fh, θh, ηh) =K−1(θh)(MF + M̃N).

Sum

Dot

MatVecProd

Nonlinear branch

Linear branch

Linear branch

Nonlinear trunk

D. Ray VarMiON 12



VarMiON

VarMiON operator is
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VarMiON

In comparison with the variational formulation

▶ Can prove D is the reduced order counterpart of K−1 (p ≪ q)

▶ While the basis Φ are fixed, τ are learned from training data.

In comparison with a vanilla DeepONet

▶ DeepONet typically has a single nonlinear branch for inputs.

▶ VarMiON explicitly constructs matrix operators. DeepONet does not.
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Training the VarMiON

1. For 1 ≤ j ≤ J , consider distinct samples (fj , θj , ηj) ∈ X .

2. Obtain the discrete approximations (fh
j , θ

h
j , η

h
j ) ∈ X h.

3. Find the discrete numerical solution uh
j = Sh(fh

j , θ
h
j , η

h
j ).

4. Choose output nodes {xl}Ll=1 to sample the numerical solution uh
jl = uh

j (xl).

5. Generate the input vectors (F̂j , Θ̂j , N̂j).

6. Collect input & output to form training set with J × L samples

S = {(F̂j , Θ̂j , N̂j ,xl, u
h
jl) : 1 ≤ j ≤ J, 1 ≤ l ≤ L},

Find the network weights that minimize the loss function

Π(ψ) =
1

J

J∑
j=1

Πj(ψ), Πj(ψ) =
L∑

l=1

wl

(
uh
jl − Ŝψ(F̂j , Θ̂j , N̂j)[xl]

)2

.

where ψ are all the trainable parameters of the VarMiON.
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Error Estimates

The generalization error for any (f, θ, η) ∈ X

E(f, θ, η) := ∥S(f, θ, η)− Ŝ(F̂ , Θ̂, N̂)∥L2 .

Split into four errors:

E(f, θ, η) ≤ ∥S(f, θ, η)− S(fj , θj , ηj)∥L2 −→ Stability of S

+∥S(fj , θj , ηj)− Sh(fh
j , θ

h
j , η

h
j )∥L2 −→ Numerical error in generating data

+∥Sh(fh
j , θ

h
j , η

h
j )− Ŝ(F̂j , Θ̂j , N̂j)∥L2 −→ Training error of VarMiON

+∥Ŝ(F̂j , Θ̂j , N̂j)− Ŝ(F̂ , Θ̂, N̂)∥L2 −→ Stability of VarMiON Ŝ
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Error Estimates

Generalization error estimate (Patel et al., 2022)
If X := F × T ×N is compact, the non-linear branch is Lipschitz, i.e.,

∥D(Θ̂)−D(Θ̂′)∥2 ≤ LD∥Θ̂− Θ̂′∥2.

Then, the generalization error can be bounded as

E(f, θ, η) ≤ C
(
ϵh + ϵs +

√
ϵt +

1

kα/2
+

1

(k′)α′/2
+

1

Lγ/2

)
where

ϵh → numerical error in training data

ϵs → covering estimate

ϵt → training error

α, α′, γ → quadrature convergence rates

The constant C depends on the stability constants of S and Ŝ.

D. Ray VarMiON 16



Numerical Example

Steady-state heat conduction

−∇ · (θ(x)∇u(x)) = f(x), ∀ x ∈ Ω,

θ(x)∇u(x) · n(x) = η(x), ∀ x ∈ Γη,

u(x) = 0, ∀ x ∈ Γg.

Γ!

Γ" Γ"

Γ!

Ω

▶ Input: thermal conductivity θ, heat sources f , and heat flux η. Output:
temperature u.

▶ Inputs: Gaussian Random Fields.

▶ Networks with two inputs (θ, f) and three inputs (θ, f, η).

▶ Compare VarMiON (p = 100) and vanilla DeepONet.

▶ Similar number of network parameters. Identical trunk architecture.

▶ Robustness: sampling (spatially uniform or random) and trunk functions
(ReLU or RBF).
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Numerical Example

▶ 10,000 samples generated using Fenics.

▶ 9,000 for training/validation and 1,000 for testing.

▶ Average value of relative L2 error reported below.

Case Model Number of parameters Relative L2 error

Two input functions with DeepONet (w/ ReLU trunk) 111,248 1.07 ± 0.39 %
randomly sampled input VarMiON(w/ ReLU trunk) 109,013 0.93 ± 0.28 %

Two input functions with DeepONet (w/ ReLU trunk) 49,928 1.98 ± 0.79 %
uniformly sampled input VarMiON(w/ ReLU trunk) 46,281 1.05 ± 0.42 %

Two input functions with DeepONet (w/ RBF trunk) 17,911 1.39 ± 0.60 %
uniformly sampled input VarMiON(w/ RBF trunk) 17,345 0.64 ± 0.35 %

Three input functions with DeepONet (w/ RBF trunk) 24,543 5.99 ± 4.24 %
uniformly sampled input VarMiON(w/ RBF trunk) 23,065 2.06 ± 0.90 %
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Numerical Example: Three inputs

Density of scaled L2 error (RBF trunk and uniform spatial sampling).
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Numerical Example: Three inputs

Predictions by VarMiON and DeepONet.
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Numerical Example: Comparison with MIONet

MIONet has been proposed [Jin et al., 2022] to handle multiple input functions.

Separate branch for each fi, followed by a Hadamard product

β = (β1 ⊙ β2 ⊙ · · · ⊙ βn), uθ(x; f1, · · · , fn) = β⊤τ(x)
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Numerical Example: Three inputs

Comparison with MIONet as the number of training samples n is varied

Training dataset size Model Relative L2 error

n = 1000
DeepONet 10.23± 5.20

MIONet 88.07± 69.68
VarMiON 4.27± 2.23

n = 2000
DeepONet 9.00± 5.63

MIONet 85.03± 123.77
VarMiON 4.04± 1.86

n = 4000
DeepONet 7.19± 3.75

MIONet 88.39± 62.10
VarMiON 2.90± 1.50

n = 6000
DeepONet 6.28± 3.55

MIONet 82.89± 34.19
VarMiON 2.74± 1.31
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A word on non-linear PDEs

▶ VarMiON needs to be carefully constructed due to the dependence on the
structure of the variational form.

▶ Have constructed a VarMiON for the regularized Eikonal equation.

▶ We believe the VarMiON architecture needs to be customized depending on
the type of PDE (ongoing work)
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Concluding remarks

▶ VarMiON: an operator network that mimics variational formulation.

▶ Takes the form of a reduced order model.

▶ Precise specification of the branch network – depends on weak form of PDE.

▶ Error analysis reveals important components – currently investigating training
with appropriate Sobolev loss.

▶ Numerical results point to better and more robust performance.

▶ Several extensions: other nonlinear operators, physics-informed residuals,
time-dependent problems, hyperbolic systems, and specification of geometry.
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