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Motivation

» Problems of interest solved using finite difference/volume, finite element,
spectral methods, ...

» Many-query applications need many calls to the solver: e.g.

B Uncertainty quantification
B PDE-constrained optimization
B Inverse problems

» Single solve expensive for large-scale applications — multiple solves O(10°)
prohibitively expensive!

» Need to design efficient, robust surrogates.
» Recent interest in deep learning-based surrogates — focus of this talk!
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v

Deep learning with neural networks

v

Solving PDEs using deep learning

v

Variationally Mimetic Operator Network (VarMiON)

» Error estimates

» Numerical results

» Conclusion
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Deep neural network

A neural network is a parametrized mapping
NNy : Qz —
typically formed by alternating composition
NNy 1= po AL 0 po A o po Af 00 po )
where
o = {4} f_; — trainable weights and biases of the network
Aifz — parametrized affine transformation

p — non-linear activation function
P
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Deep neural network

A neural network is a parametrized mapping
NN.¢ : Qz — Qy
typically formed by alternating composition

L+1 L L—1
NNy = po A 0 po AL o po A 0.0 po )

where
o = {4} f_; — trainable weights and biases of the network
Aifz — parametrized affine transformation
p — non-linear activation function
Usage:

» Let  and y be related in some manner, say y = F(x).
» We are only given S = {(a;, y:)} 1.
» NN, can be used to learn F.
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Deep neural network

Consider a suitable measure
Qe X Qy X Qe x Qy = R

s.t. u(x, y, x, NNy (x)) is the error/discrepancy between (x,y) € S and
(z, NNy()).

Define the loss/objective function

N
1
(v) = N ; w(@i, Yi, iy NNy (2:))
Solve the optimization problem
" = arg minII(1))
P

Then NNy« ~ F
Also need to tune network hyper-parameters:

» Width « Depth (L) - Activation function p « Optimizer
* Loss function « Dataset
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Solving PDEs using deep learning

Consider the generic PDE:
L(u(z)) = f(z), Vzel
» Solution approximated by a network u(x; ) with parameters .

» Minimize PDE residual at collocation points {x;} (Lagaris et al., 2000): Solve
1 N
* . _ o~ . _ . 2
P —argfunﬂ(ilf), ) =+ ;:1 I L(a(@i; ) — f(:)|

» Rediscovered as Physics Informed Neural Nets (PINNs) with deeper
structures (Raissi et al., 2019).

» However, solves one instance of the PDE — must be retrained if f changes.
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Solving PDEs using DL

We are interested in approximating the solution operator

S:F—V, S(f)=u(sf)

» Network-based operator learning with shallow networks [Chen & Chen, 1995].
» DeepONets: extension to deeper architectures [Lu et al., 2021]
» Comprise two subnetworks: the trunk (basis) and the branch (basis).

TN

P . Branch —”G(R

"/ SubNet N

- - ug(; f)
Rk R? N

Dot —>

= B R
I-/ - N Trunk T(ﬂ}

N SubNet N4

Rr? RP
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Solving PDEs using DL

We are interested in approximating the solution operator

S:F—V, S(f)=u(sf)

Network-based operator learning with shallow networks [Chen & Chen, 1995].
DeepONets: extension to deeper architectures [Lu et al., 2021]

Comprise two subnetworks: the trunk (basis) and the branch (basis).
Neural operators — an alternate strategy to approximate S

vV VvV vy VvYy

Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel
Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...

D. Ray VarMiON 6



Solving PDEs using DL

We are interested in approximating the solution operator

S:F—V, S(f)=u(sf)

Network-based operator learning with shallow networks [Chen & Chen, 1995].
DeepONets: extension to deeper architectures [Lu et al., 2021]

Comprise two subnetworks: the trunk (basis) and the branch (basis).
Neural operators — an alternate strategy to approximate S

vV VvV vy VvYy

Come in many flavors: Fourier Neural Operators [Li et al., 2020], Graph Kernel
Net [Li et al., 2020], PCA-NET [Bhattacharya et al., 2021], ...

v

This talk: Operator Networks that mimic (approximate) variational form™ of the
PDE.

[* Variationally Mimetic Operator Networks; Patel, Ray, Abdelmalik, Hughes, Oberai; CMAME, 2024 ]
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Problem Statement

» Consider a generic linear elliptic PDE:

L(u(z);0(x)) = f(x), VxeQ,
B(u(x);0(x)) = n(x), Vaxely,
u(x) =0, Ve ely,

where f € F C L*(Q),n e N C L*(T},), 0 € T C L™=(Q).

» The variational formulation: find u € V C H, such thatV w € V,

a(w,u;0) = (w, f) + (w,n)r,.

» The solution operator is

S:X=FxTxN-—VCH,
(f,0,m) = u(; f,0,m)

This mapping can be non-linear in 6.
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Discrete weak formulation

» Evaluate approximate solution in finite-dimensional space
Vi = span{¢;(x) : 1 <i < q}.

» Discrete weak formulation: find " € V" such that vV w" € V*,

a(w",u";0") = (", ") + (w,n")r,,.

» Any function v" € V" can be written as
(@) =VIe(@), V=(0,,0), @@ =(d1(x), - de(x)) "

Plugging this into discrete weak form gives...
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Discrete weak form

» Linear system of equations,
K(0"U = MF + MN

where the matrices are given by

Kij(0") = a(¢i, ¢550"), My = (¢i,¢5), Mij = (di,¢5)r, 1<i,j<q.

» Discrete solution operator is
Shoxh=F T x N — V"
(fh, oh,nh) — uh(‘; fh70h,nh) — B(fh,’nh, Gh)T@
where

B(f",0".7") =U = K~'(0")(MF + MN).

VarMiON will mimic this structure!
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VarMiON

Evaluate (f, 6, n) at some fixed sensor nodes to get the discrete sample vectors

-~

F= (f({fl), 7f(55k‘)—ra é = (9(&:\1)7 79(55’&‘))T7 J/\?: (77(51{)7 aﬂ@Z')T
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VarMiON

The network is comprises several sub-networks with latent dimension p:

Nonlinear branch pXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

Nonlinear trunk
()

a = £ =~
X X X X
[ — [ o
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?

non-linear CNN that outputs a matrix
Nonlinear branch pPXDp

D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

a2 = £l
X X X
- - —

dx1

Nonlinear trunk
()

T
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?
» Two linear branches with learnable matrices A, A

Nonlinear branch pPXp
D(®)

MatVecProd

Linear branch px1
AF

o >
X X
- -

k' x1
Linear branch px1

@—’ AN

dx1 linear (learnable) transformations
Nonlinear trunk px1

@_’ ()
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VarMiON

The network is comprises several sub-networks with latent dimension p:
» Non-linear branch net: ® — D(©) € RP*?
» Two linear branches with learnable matrices A, A

» Non-linear trunk (basis of VarMiON): x + 7(x) = (11(x), - - - 7p(x)) "

Nonlinear branch pPXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

a2 = £l
X X X
- - —

dx1
Nonlinear trunk
(@) non-linear basis of VarMiON

T
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VarMiON

VarMiON operator is
S:R* x R* x R¥ — V"™ = span{ri(z): 1 <i < p}
(F,0,N)~u(;F,0,N)=6(/"1"6""r

where o R o
B(F,©,H) = D(®)(AF + AN).

Nonlinear branch pXp
D(®)

MatVecProd

Linear branch
AF

Linear branch
AN

Nonlinear trunk
()

a = £ =
X X X X
[ — [ o
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VarMiON

VarMiON operator is

S:R* x R* x R¥ — V"™ = span{ri(z): 1 <i < p}
(F,,N) — a(;F,0,N) = B(f" 1", ")~

where o - — L
B(F,0,H)=D(O©)(AF + AN). ‘
|
Compare this to the discrete solution operator: /
S FM X T NP V" %

(f", 0" ") s G 10" 0™ < B 0" 0M) T @

where -
B(f",0",n") = K '(6")(MF + MN).
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VarMiON

In comparison with the variational formulation
» Can prove D is the reduced order counterpart of K~ (p < ¢q)
» While the basis ® are fixed, = are learned from training data.

In comparison with a vanilla DeepONet
» DeepONet typically has a single nonlinear branch for inputs.
» VarMiON explicitly constructs matrix operators. DeepONet does not.

D. Ray VarMiON 13



Training the VarMiON

For 1 < j < J, consider distinct samples (f;,0;,n;) € X.

Obtain the discrete approximations (f;',07, 7)) € X"

Find the discrete numerical solution u} = S"(f}', 0%, n}).

Choose output nodes {z;}/~, to sample the numerical solution v/, = u” (z;).
Generate the input vectors (F}, ©;, N;).

Collect input & output to form training set with J x L samples

o 0 M0~

S:{(Eaéjvl/\]\-ﬁmlvu?l):1§j§‘]7 1SZSL}7

Find the network weights that minimize the loss function

J L
DRSO IUES SRR AL
j=1 =1

where %) are all the trainable parameters of the VarMiON.
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Error Estimates

The generalization error for any (f,0,n) € X

-~

E(f,0,m) = |S(f,0,m) = S(F,©,N)| 1.
Split into four errors:

E(f.0.m) < (IS(f,0,m) = S(f5,05.m;)l[L2 — Stabiliy of S
+S(f5,05,n5) — Sh(fjh, 0%, 1")|| > — Numerical error in generating data

+||Sh(f] ,67] 7773) g(ﬁ éj,]/v\j)||L2 —> Training error of VarMiON
+|8(F;,©;,N;) — S(F,©,N)| .2 — Stability of VarMioN 3
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Error Estimates

Generalization error estimate (Patel et al., 2022)
If X := F x T x N is compact, the non-linear branch is Lipschitz, i.e.,

|ID(®) — D(®)|2 < Lp||© — &2

Then, the generalization error can be bounded as

1 1 1
Erom=¢ (eh Tet Vet nt ment Lm)

where

e, — numerical error in training data
€s — covering estimate
€, — training error

a, o,y — quadrature convergence rates

g

The constant C depends on the stability constants of S and S.
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Numerical Example

F'l
Steady-state heat conduction
-V - (0(z)Vu(z)) = f(x), Ve, I, 7 I,
0(x)Vu(z) n(x) = nx), Vzel,
u(x) =0, Ve el
T

n

Input: thermal conductivity 6, heat sources f, and heat flux n. Output:
temperature w.

Inputs: Gaussian Random Fields.

Networks with two inputs (6, f) and three inputs (9, f, n).

Compare VarMiON (p = 100) and vanilla DeepONet.

Similar number of network parameters. Identical trunk architecture.

Robustness: sampling (spatially uniform or random) and trunk functions
(ReLU or RBF).

v

vVvyVvyyvyy
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Numerical Example

» 10,000 samples generated using Fenics.
» 9,000 for training/validation and 1,000 for testing.
» Average value of relative L, error reported below.

Case Model Number of parameters  Relative L, error
Two input functions with  DeepONet (w/ ReLU trunk) 111,248 1.07 £ 0.39 %
randomly sampled input VarMiON(w/ ReLU trunk) 109,013 0.93 + 0.28 %
Two input functions with  DeepONet (w/ ReLU trunk) 49,928 1.98 £0.79 %
uniformly sampled input VarMiON(w/ ReLU trunk) 46,281 1.05 + 0.42 %
Two input functions with DeepONet (w/ RBF trunk) 17,911 1.39 £ 0.60 %
uniformly sampled input VarMiON(w/ RBF trunk) 17,345 0.64 + 0.35 %
Three input functions with  DeepONet (w/ RBF trunk) 24,543 5.99 +4.24 %
uniformly sampled input VarMiON(w/ RBF trunk) 283,065 2.06 + 0.90 %
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Numerical Example: Three inputs

Density of scaled L. error (RBF trunk and uniform spatial sampling).

0.6 DeepONet
B VvarMIiON
2 04
‘W
c
[}
(]
0.2
0
' A R K111 18 AR (0 11111
1 |
0 5 10 15 20 25 30

Val. error (in %)
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Numerical Example: Three inputs

Predictions by VarMiON and DeepONet.

f ] h u (true) u (VarMiON) error u (DeepONet) error

1.40 % 3.43%

D. Ray
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Numerical Example: Comparison with MIONet

MIONet has been proposed [Jin et al., 2022] to handle multiple input functions.

Separate branch for each f;, followed by a Hadamard product

B=B' @B 0 0B, uzifi, fa)=p8"T(x)

“/ J;l\ = Fl Branch //31\

AN N Subnen \

VRN o

(f2) Fz Branch / 2
/

ug(a; fu < fn)

Subnet 1 \/3
Bvanch \
Dot —>
Trunk ( } R
Subnet
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Numerical Example: Three inputs

Comparison with MIONet as the number of training samples n is varied

Training dataset size Model Relative L error

_ DeepONet 10.23 +5.20
n = 1000 MIONet 88.07 + 69.68
VarMiON 4.27 + 2.23

_ DeepONet 9.00 & 5.63
n = 2000 MIONet 85.03 + 123.77
VarMiON 4.04 4+ 1.86

_ DeepONet 7.19 £3.75
n = 4000 MIONet 88.39 4 62.10
VarMiON 2.90 £+ 1.50

_ DeepONet 6.28 £ 3.55
n = 6000 MIONet 82.89 + 34.19
VarMiON 2.74+1.31
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A word on non-linear PDEs

» VarMiON needs to be carefully constructed due to the dependence on the
structure of the variational form.

» Have constructed a VarMiON for the regularized Eikonal equation.

» We believe the VarMiON architecture needs to be customized depending on
the type of PDE (ongoing work)
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Concluding remarks

» VarMiON: an operator network that mimics variational formulation.
» Takes the form of a reduced order model.
» Precise specification of the branch network — depends on weak form of PDE.

» Error analysis reveals important components — currently investigating training
with appropriate Sobolev loss.

» Numerical results point to better and more robust performance.

» Several extensions: other nonlinear operators, physics-informed residuals,
time-dependent problems, hyperbolic systems, and specification of geometry.
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