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Outline

I Inverse problems and Bayesian inference

I Deep neural networks

I Conditional generative adversarial networks (cGANs)

I Deep posteriors
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Forward and inverse problems

Consider a forward problem

F : x ∈ Ωx 7→ y ∈ Ωy , Ωx ∈ RNx , Ωy ∈ RNy

For example, the heat conduction PDE model for temperature field u

∂u(s, t)
∂t

−∇ · (κ(s)∇u(s, t)) = f (s), ∀ (s, t) ∈ (0, 1)2 × (0,T ]

u(ξ, 0) = u0(s), ∀ s ∈ (0, 1)2

u(ξ, t) = 0, ∀ s ∈ ∂(0, 1)2 × (0,T ]

Forward problem: Given u0(s) determine u(s,T )

Discrete Initial Temp. Discrete Final Temp.

x y y

noise
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Forward and inverse problems

Consider a forward problem

F : x ∈ Ωx 7→ y ∈ Ωy , Ωx ∈ RNx , Ωy ∈ RNy

For example, the heat conduction PDE model for temperature field u

∂u(s, t)
∂t

−∇ · (κ(s)∇u(s, t)) = f (s), ∀ (s, t) ∈ (0, 1)2 × (0,T ]

u(ξ, 0) = u0(s), ∀ s ∈ (0, 1)2

u(ξ, t) = 0, ∀ s ∈ ∂(0, 1)2 × (0,T ]

Inverse problem: Given noisy u(s,T ) infer u0(s)

Discrete Initial Temp. Discrete Final Temp. Discrete Noisy Final Temp.

x y

noise
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Forward and inverse problems

Challenges with inverse problems:

I Inverse map is not well posed.

I Noisy measurements.

I Need to encode prior knowledge about x .

Uncertainty in inferred field critical for applications with high-stake decisions.

Example: Medical imaging to detect liver lesions
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Bayesian framework

Assume x and y are modelled by random variables X and Y .

AIM: Given a measurement Y = y approximate the conditional (posterior)
distribution

PX |Y (x |Y = y)

and sample from it.

P    (x |Y=y )
sampler

y x1 , ... , xN

xmean xSD

X |Y
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Bayesian formulation: challenges

I Posterior sampling techniques, such as Markov Chain Monte Carlo, are
prohibitively expensive when Nx is large.

I Characterization of priors for complex data

Examples of prior data snapshots for x :

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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Deep neural network

A neural network is a parametrized mapping

NNθ : Ωx → Ωy

typically formed by alternating composition

NNθ := ρ ◦ A(L+1)
θL+1

◦ ρ ◦ A(L)
θL
◦ ρ ◦ A(L−1)

θL−1
◦ · · · ◦ ρ ◦ A(1)

θ1

where

θ = {θk}L
k=1 −→ trainable weights and biases of the network

A(k)
θk
−→ parametrized affine transformation

ρ −→ non-linear activation function

x1
x2
x3
x4

W x + b
= {W,b}

z1
z2
z3
z4
z5
z6

y1
y2
y3
y4
y5
y6

Usage:

I Let x and y are related in some manner, say y = f (x).

I We are only given S = {(xi , yi )}N
i=1.

I NNθ can be used to learn f .
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Deep neural network

Consider a suitable measure

µ : Ωx × Ωy × Ωx × Ωy → R

s.t. µ(x , y , x ,NNθ(x)︸ ︷︷ ︸
=ŷ

) is the error/discrepancy between (x , y) ∈ S and (x , ŷ).

Define the loss/objective function

Π(θ) =
1
N

N∑
i=1

µ(xi , yi , xi ,NNθ(xi ))

Solve the non-convex optimization problem

θ∗ = arg min
θ

Π(θ)

Then NNθ∗ ≈ f

Also need to tune network hyper-parameters:
•Width • Depth (L) • Activation function ρ • Optimizer
• Loss function • Dataset
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Conditional GANs

I Learning distributions conditioned on another field.

I Comprises two neural networks, g and d .

I Flipping role of x and y for inverse problems.

z

g x~

Generator

d

Critic

x~

x

y y

y

Generator network:

I g : Ωz × Ωy → Ωx .

I Latent variable z ∼ PZ , Nz � Nx .

I (x , y) ∼ PXY

Critic network:

I d : Ωx × Ωy → R.

I d(x , y) large for real x , small
otherwise.
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Conditional GANs

I Objective function

Π(g, d) = E
(x,y)∼PXY

z∼PZ

[
d(x , y)− d

(
g(z, y), y

)]
I g and d determined (with constraint ‖d‖Lip ≤ 1) through

(g∗, d∗) = arg min
g

arg max
d

Π(g, d)

I Adler et al. (2018) proved that the minmax problem is equivalent to

g∗(., y) = arg min
g

W1(PX |Y ,g#(., y)PZ ) given y ∼ pY

where W1 is the Wasserstein-1 distance.

I Convergence in W1 implies weak convergence

E
x∼PX|Y

[`(x)] = E
z∼PZ

[`(g∗(z, y))] , ∀ ` ∈ Cb(ΩX ).

=⇒ conditional statistics converge!
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Posterior sampling using cGANs

Steps:

I Acquire samples Sx = {x1, ..., xN}, where xi ∼ Pprior
X .

I Use forward map F to generate paired dataset

S = {(x1, y1), ..., (xN , yN)} where yn = F(xn) + noise.

I Train a cGAN on S
I For a new test measurement y , generate samples using g∗.
I Evaluate statistics using Monte Carlo

g*

La
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y x1 , ... , xN

xmean xSD

Z1 , ... , ZN
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Solving the inverse heat conduction equation

Consider the PDE

∂u(s, t)
∂t

−∇ · (κ(s)∇u(s, t)) = f (s), ∀ (s, t) ∈ (0, 1)2 × (0,T ]

u(ξ, 0) = u0(s), ∀ s ∈ (0, 1)2

u(ξ, t) = 0, ∀ s ∈ ∂(0, 1)2 × (0,T ]

I x : discrete initial temperature field.

I y : noisy discrete final temperature field.

I F : Finite difference solver for the PDE.

I We will assume a constant κ and f .
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Inferring initial condition: parametric prior

Assuming x to given by a rectangular inclusion and Nx = Ny = 28× 28 = 784

Training samples:

x y (clean) y

0.0

2.0

4.0

0.0

0.7

1.5

-2.4

0.6

3.6 x y (clean) y

0.0

2.0

4.0

0.0

0.8

1.7

-3.2

0.4

4.0

x y (clean) y

0.0

2.0

4.0

0.0

0.8

1.6

-2.9

0.5

3.8 x y (clean) y

0.0

2.0

4.0

0.0

0.6

1.3

-2.9

0.4

3.6

We never actually have clean y !
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Inferring initial condition: parametric prior

Testing trained cGAN (statistics with 800 z samples)

y x ref. mean ref. SD

-2.8

0.7

4.2

0.0

2.0

4.0

0.0

2.0

4.0

0.0

1.0

2.0

Ref. Nz=1 Nz=2 Nz=3 Nz=4 Nz=5 Nz=10 Nz=50

0.0

2.0

3.9

Ref. Nz=1 Nz=2 Nz=3 Nz=4 Nz=5 Nz=10 Nz=50

0.0

1.0

2.0
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Inferring initial condition: non-parametric prior

Assuming x to given by MNIST handwritten digits and Nx = Ny = 28× 28 = 784

Training samples:

x y (clean) y

0.0

2.0

4.0

0.0

1.2

2.4

-0.9

0.9

2.7 x y (clean) y

0.0

2.0

4.0
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1.1

2.2

-1.0

0.9

2.9

x y (clean) y

0.0

2.0

4.0

0.0

0.7

1.4
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0.4

2.0 x y (clean) y
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2.0

4.0

0.0

1.2

2.3
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1.0

2.8
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Inferring initial condition: non-parametric prior

Testing trained cGAN (statistics with 800 z samples)
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Generalization

Generalization: Network trained on Set A gives good predictions on another
distinct Set B, possibility sampled from a different distribution.

We can prove1 the following theorem on generalizability: Assume
I The true (regularized) inverse map F−1 is spatially local.
I Set A and Set B contain samples with similar local spatial features.
I A cGAN train on Set A, and is also spatially local.

Then the cGAN can generalize well to Set B.

X Y

Local

dependence

1: The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse
problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.
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Generalization

cGAN trained on MNIST, tested on notMNIST (locally similar features)

y x mean SD

Imp. sample 1 Imp. sample 2 Imp. sample 3 Imp. sample 4
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0.0

2.0
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Generalization

Locality of (regularized) inverse-heat equation:

I Consider final temperature as T = 1 as Gaussian bump

u(s,T ) =
1√
2πσ

exp

(
−|s − s0|2

2σ2

)
, σ = 0.7,

I Solve inverse problem using FFT but killing higher-modes (hyper-diffusion).

I Move Gaussian center s0 and repeat.

0.00

0.02

0.04

0.06

u(s, T ) for s0 = (0, 0)
0.00

0.02

0.04

0.06

u(s, 0)

D. Ray DL-based posterior inference for inverse problems 18



Generalization

Vizualize u(s, 0) at fixed s = s1 (marked in red) as s0 moved in 28× 28 grid.

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

Influence of u(s,T ) on u(s, 0) weakens as s0 moves away from s1.
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Generalization

Gradient of k -th component (marked in red) of g∗ wrt input y

gradk =
1

1000

100∑
i=1

10∑
j=1

∣∣∣∣∂gk

∂y
(z (j), y (i))

∣∣∣∣ , y (i) ∼ PY , z (j) ∼ PZ , 1 ≤ k ≤ NX .

0.00

0.02

0.05

0.00

0.06

0.11

0.01

0.14

0.27

0.01

0.13

0.26

0.01

0.12

0.24

0.00

0.08

0.16

Gradient concentrated near k -th component of y =⇒ locality of g∗.
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Conclusion

I What do we gain?
I Ability to represent and encode complex prior data.

I Dimension reduction since Nz � Nx .

I Sampling from cGAN is quick and easy.

I Generalizability – training on smaller dataset.

I Algorithm has been tested for many other physic-based applications.
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