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Challenges with Bayesian inference

» Conditional generative adversarial networks (CGANSs)

» Deep posteriors with cGANs

» Generalizability

» Conclusion
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Forward and inverse problems

Consider a forward problem

FixeQm—yecQ, Q cR¥ Q,eRM™

For example the heat conduction PDE:
Temperature
Ou(s,t pu il  sensors
% — rkAu(s,t)) =0 (Nin each diection)
13

u(s, 0) = ug(s)
where

u(s, t) — temperature at location s at time ¢

uq(s) — initial temperature at location s
~ — thermal conductivity of material

Inverse problem F~': Given noisy u(s, T) infer uo(s)
]-‘ noise

Discrete Final Temp. Discrete Noisy Final Temp.

Discrete \nmal Temp,
: n Il

cGANs for inverse problems
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Bayesian inference

Challenges with inverse problems:
» Inverse map is not well posed.
» Noisy measurements.
» Need to encode prior knowledge about .

Bayesian framework: = and y modelled by random variables X and Y.

AIM: Given a measurement Y = y approximate the conditional (posterior)

distribution
Px |y (z|y)
and sample from it.
Yy Z1,T2y---3 TN
Pxy (z]y)
=—>  sampler =
S -
Tmean TSD
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Bayesian inference: challenges

» Posterior sampling techniques, such as Markov Chain Monte Carlo, are
prohibitively expensive when dimension of X is large.

» Characterization of priors for complex data

For example, « data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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Conditional GANs

» Learning distributions conditioned on another field.
» Comprises two neural networks, g and d.

Generator Critic
Generator network: Critic network:
> g: Q. xQy — Q. > d:Q, xQy >R
» Latent variable Z ~ Pz, e.g. » d tries to detect fake samples.
N(0,I). Also N. < Na. » d(zx,y) large for real =, small
» (x,y) sampled from true Pxy otherwise.
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Conditional GANs

» GivenY =y and Z ~ Pz we get a random variable
X?=g(Z,y), X%~Pgy.
» Objective function

H(ga d) [d(va) _d(g(Za Y),Y)]

= E
(X,)Y)~Pxy
APy

» g and d determined (with constraint ||d||Lp < 1) through
(g*,d") = argmin arg maxII(g, d)
g d
» Adler et al. (2018) proved that the minmax problem is equivalent to
g = arg;ninYEEPY [Wl(PX\Y, quy)]

where W is the Wasserstein-1 distance.
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Posterior sampling using cGANs

Steps:
» Acquire samples S, = {z1, ..., }, where x; ~ PY".
» Use forward map F to generate paired dataset

S ={(x1,y1), ..., (®n,yn)} where wy, = F(x,)+ noise.

» TrainacGANon S.
» For a new test measurement y, generate samples using g*.
» Evaluate statistics using Monte Carlo.

Y L1yL2y e
— —
% / aTmean
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Solving the inverse heat conduction equation

Consider the PDE

w — V- (k(s)Vu(s,t)) =0, v (s,t) € (0, 27r)2 x (0,1]
u(€,0) = uo(s), Vse(02r)?
u(€,t) =0, Vs € 8(0,2m)° x (0,1]

» x: discrete initial temperature field.

» y: noisy discrete final temperature field.
» F: Finite difference solver for the PDE.
» We assume a constant x.
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Inferring initial condition: parametric prior

Assuming « to given by a rectangular inclusion and N, = N, = 28 x 28 = 784

! | (clean) ‘
X ‘ . | (clean) ‘

We don’t have clean y in real problems!

Training samples:

X
n ino

X
n ‘oo

(clean)

(clean)
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Inferring initial condition: parametric prior

Testing trained cGAN (statistics with 800 z samples)

ref. mean

42 X 4.0 Y
Hw u ) n‘ |
28 o.0 X

-
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Inferring initial condition: non-parametric prior

Assuming « to given by (heat stamped) MNIST handwritten digits and
N, =N, =28 x 28 =784

Training samples:

(clean)

-‘AOﬁ‘ » ‘ x ‘

X ‘ . ‘(cean) ‘ . y ' (clean)

cGAN trained using latent dimension N, = 100.
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Inferring initial condition: non-parametric prior

Testing trained cGAN (statistics with 800 z samples)

} X _ mean

X X : : 13
d =

. ‘ . : 0.7

0.0 ) 0.0

-0.9
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Generalization

Generalization: cGAN trained on Set A gives good predictions on another distinct
Set B, possibility sampled from a different distribution.

We can prove' the following: Assume
» The true (regularized) inverse map F~! is spatially local.
» Set A and Set B contain samples with similar local spatial features.
» A cGAN train on Set A, and is also spatially local.

Then the cGAN can generalize well to Set B.

— dependence ”

X Y

1: The efficacy and generalizability of conditional GANSs for posterior inference in physics-based inverse
problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.
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Generalization

cGAN trained on MNIST, tested on notMNIST

) X ' ) 13
| @H | | )
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Conclusion

» What do we gain?
> Ability to represent and encode complex prior data.

» Dimension reduction since N, < Ng.

» Sampling from cGAN is quick and easy.
» Need (z, y) pairs to train — supervised algorithm.
» Generalizability — training on smaller dataset.

» Currently testing algorithm on several other physics-based and medical
applications.

Questions?
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Special architecture of generator

» U-Net architecture when x, y have tensored (image-like) structure.

» z injected through conditional instance normalization:

> Can choose N independent of N,.
> Introduce stochasticity at multiple scales of U-Net.

Leaky RELU
e
TP

Down(2)
2

Down (2)
10

Up(1)
no concat.
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