Conditional GANs and their generalizability in physics-based inverse problems

Deep Ray Department of Aerospace & Mechanical Engineering University of Southern California

Email: deepray@usc.edu Website: deepray.github.io

Jointly with Assad Oberai, Harisankar Ramaswamy, Dhruv Patel

Supported by ARO grant W911NF2010050, NRL grant N00173-19-P-1119, AIER-USC, CARC-USC

School of Engineering

USACM UQ-MLIP Arlington, Virginia August 18-19, 2022

- Challenges with Bayesian inference
- Conditional generative adversarial networks (cGANs)
- Deep posteriors with cGANs
- Generalizability
- Conclusion

Forward and inverse problems

Consider a forward problem

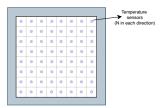
$$\mathcal{F}: \boldsymbol{x} \in \Omega_x \mapsto \boldsymbol{y} \in \Omega_y, \quad \Omega_x \in \mathbb{R}^{N_x}, \ \Omega_y \in \mathbb{R}^{N_y}$$

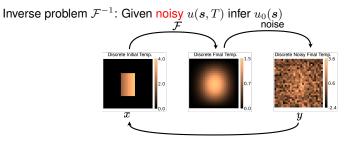
For example the heat conduction PDE:

$$\frac{\partial u(\boldsymbol{s},t)}{\partial t} - \kappa \Delta u(\boldsymbol{s},t) = 0$$
$$u(\boldsymbol{s},0) = u_0(\boldsymbol{s})$$

where

 $u(s, t) \rightarrow \text{temperature at location } s \text{ at time } t$ $u_0(s) \rightarrow \text{initial temperature at location } s$ $\kappa \rightarrow \text{thermal conductivity of material}$





Challenges with inverse problems:

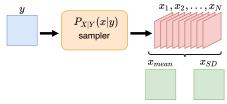
- Inverse map is not well posed.
- ► Noisy measurements.
- Need to encode prior knowledge about x.

Bayesian framework: x and y modelled by random variables X and Y.

AIM: Given a measurement Y = y approximate the conditional (posterior) distribution

$$P_{\boldsymbol{X}|\boldsymbol{Y}}(\boldsymbol{x}|\boldsymbol{y})$$

and sample from it.



- Posterior sampling techniques, such as Markov Chain Monte Carlo, are prohibitively expensive when dimension of X is large.
- Characterization of priors for complex data

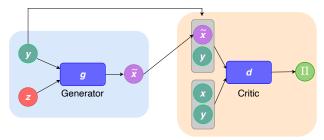
For example, *x* data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning

Conditional GANs

- Learning distributions conditioned on another field.
- ▶ Comprises two neural networks, *g* and *d*.



Generator network:

- $\blacktriangleright g: \Omega_z \times \Omega_y \to \Omega_x.$
- Latent variable $Z \sim P_Z$, e.g. N(0, I). Also $N_z \ll N_x$.
- $(\boldsymbol{x}, \boldsymbol{y})$ sampled from true P_{XY}

Critic network:

- $\blacktriangleright d: \Omega_x \times \Omega_y \to \mathbb{R}.$
- ▶ *d* tries to detect fake samples.
- ► d(x, y) large for real x, small otherwise.

• Given Y = y and $Z \sim P_Z$ we get a random variable

$$X^g = g(Z, y), \quad X^g \sim P^g_{X|Y}.$$

Objective function

$$\Pi(\boldsymbol{g}, d) = \mathop{\mathbb{E}}_{\substack{(\boldsymbol{X}, \boldsymbol{Y}) \sim P_{\boldsymbol{X}} \\ \boldsymbol{Z} \sim P_{\boldsymbol{Z}}}} \left[d(\boldsymbol{X}, \boldsymbol{Y}) - d(\boldsymbol{g}(\boldsymbol{Z}, \boldsymbol{Y}), \boldsymbol{Y}) \right]$$

▶ g and d determined (with constraint $||d||_{Lip} \leq 1$) through

$$(\boldsymbol{g}^*, d^*) = \operatorname*{arg\,min}_{\boldsymbol{g}} \ \operatorname*{arg\,max}_{d} \Pi(\boldsymbol{g}, d)$$

Adler et al. (2018) proved that the minmax problem is equivalent to

$$\boldsymbol{g}^{*} = \arg\min_{\boldsymbol{g}} \mathbb{E}_{\boldsymbol{Y} \sim P_{\boldsymbol{Y}}} \left[W_{1}(P_{\boldsymbol{X}|\boldsymbol{Y}}, P_{\boldsymbol{X}|\boldsymbol{Y}}^{\boldsymbol{g}}) \right]$$

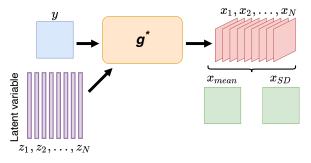
where W_1 is the Wasserstein-1 distance.

Steps:

- Acquire samples $\mathcal{S}_x = \{ \boldsymbol{x}_1, ..., \boldsymbol{x}_N \}$, where $\boldsymbol{x}_i \sim P_X^{\mathsf{prior}}$.
- \blacktriangleright Use forward map ${\cal F}$ to generate paired dataset

 $\mathcal{S} = \{(\boldsymbol{x}_1, \boldsymbol{y}_1), ..., (\boldsymbol{x}_N, \boldsymbol{y}_N)\}$ where $\boldsymbol{y}_n = \mathcal{F}(\boldsymbol{x}_n) +$ noise.

- Train a cGAN on S.
- ▶ For a new test measurement y, generate samples using g^{*}.
- Evaluate statistics using Monte Carlo.



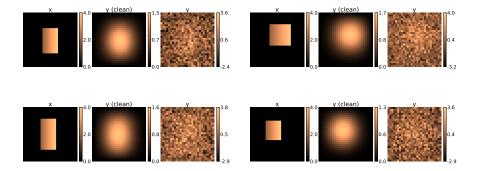
Consider the PDE

$$\begin{aligned} \frac{\partial u(\boldsymbol{s},t)}{\partial t} - \nabla \cdot (\kappa(\boldsymbol{s})\nabla u(\boldsymbol{s},t)) &= 0, & \forall \ (\boldsymbol{s},t) \in (0,2\pi)^2 \times (0,1] \\ u(\boldsymbol{\xi},0) &= u_0(\boldsymbol{s}), & \forall \ \boldsymbol{s} \in (0,2\pi)^2 \\ u(\boldsymbol{\xi},t) &= 0, & \forall \ \boldsymbol{s} \in \partial(0,2\pi)^2 \times (0,1] \end{aligned}$$

- ▶ *x*: discrete initial temperature field.
- ▶ y: noisy discrete final temperature field.
- \mathcal{F} : Finite difference solver for the PDE.
- We assume a constant κ .

Inferring initial condition: parametric prior

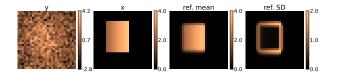
Assuming *x* to given by a rectangular inclusion and $N_x = N_y = 28 \times 28 = 784$ Training samples:

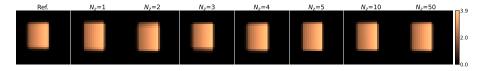


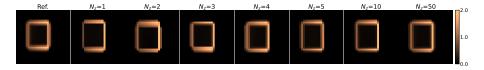
We don't have clean y in real problems!

Inferring initial condition: parametric prior

Testing trained cGAN (statistics with 800 z samples)



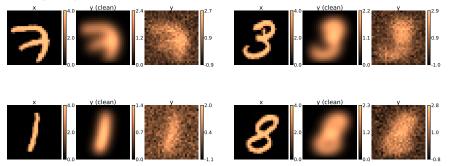




Inferring initial condition: non-parametric prior

Assuming *x* to given by (heat stamped) MNIST handwritten digits and $N_x = N_y = 28 \times 28 = 784$

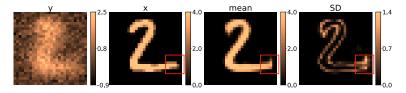
Training samples:

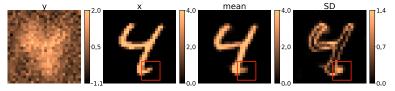


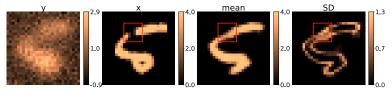
cGAN trained using latent dimension $N_z = 100$.

Inferring initial condition: non-parametric prior

Testing trained cGAN (statistics with 800 z samples)





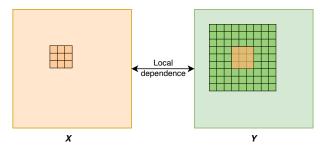


Generalization: cGAN trained on Set A gives good predictions on another distinct Set B, possibility sampled from a different distribution.

We can prove¹ the following: Assume

- The true (regularized) inverse map \mathcal{F}^{-1} is spatially local.
- ► Set A and Set B contain samples with similar local spatial features.
- A cGAN train on Set A, and is also spatially local.

Then the cGAN can generalize well to Set B.

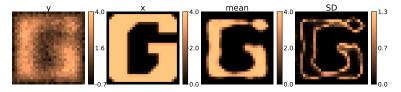


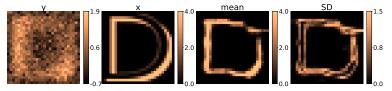
1: The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.

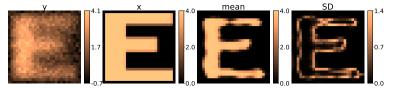
D. Ray cGANs for inverse problems	
-----------------------------------	--

Generalization

cGAN trained on MNIST, tested on notMNIST







- What do we gain?
 - Ability to represent and encode complex prior data.
 - Dimension reduction since $N_z \ll N_x$.
 - Sampling from cGAN is quick and easy.
- Need (x, y) pairs to train supervised algorithm.
- ► Generalizability training on smaller dataset.
- Currently testing algorithm on several other physics-based and medical applications.

Questions?

Special architecture of generator

- **U-Net** architecture when x, y have tensored (image-like) structure.
- ► *z* injected through conditional instance normalization:
 - Can choose N_z independent of N_y .
 - Introduce stochasticity at multiple scales of U-Net.

