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Forward and inverse problems

Consider a forward problem

F : x ∈ Ωx 7→ y ∈ Ωy, Ωx ∈ RNx , Ωy ∈ RNy

Temperature  
sensors 

(N in each direction)

For example the heat conduction PDE:

∂u(s, t)

∂t
− κ∆u(s, t)) = 0

u(s, 0) = u0(s)
where

u(s, t)→ temperature at location s at time t

u0(s)→ initial temperature at location s

κ→ thermal conductivity of material

Inverse problem F−1: Given noisy u(s, T ) infer u0(s)
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Bayesian inference

Challenges with inverse problems:

I Inverse map is not well posed.

I Noisy measurements.

I Need to encode prior knowledge about x.

Bayesian framework: x and y modelled by random variables X and Y .

AIM: Given a measurement Y = y approximate the conditional (posterior)
distribution

PX|Y (x|y)

and sample from it.

sampler
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Bayesian inference: challenges

I Posterior sampling techniques, such as Markov Chain Monte Carlo, are
prohibitively expensive when dimension of X is large.

I Characterization of priors for complex data

For example, x data might look like:

Representing this data using simple distributions is hard!

Resolve both issues using deep learning
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Conditional GANs

I Learning distributions conditioned on another field.

I Comprises two neural networks, g and d.

z

g x~

Generator

d

Critic

x~

x

y y

y

Generator network:

I g : Ωz × Ωy → Ωx.

I Latent variable Z ∼ PZ , e.g.
N(0, I). Also Nz � Nx.

I (x,y) sampled from true PXY

Critic network:

I d : Ωx × Ωy → R.

I d tries to detect fake samples.

I d(x,y) large for real x, small
otherwise.
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Conditional GANs

I Given Y = y and Z ∼ PZ we get a random variable

Xg = g(Z,y), Xg ∼ P g
X|Y .

I Objective function

Π(g, d) = E
(X,Y )∼PXY

Z∼PZ

[
d(X,Y )− d

(
g(Z,Y ),Y

)]
I g and d determined (with constraint ‖d‖Lip ≤ 1) through

(g∗, d∗) = arg min
g

arg max
d

Π(g, d)

I Adler et al. (2018) proved that the minmax problem is equivalent to

g∗ = arg min
g

E
Y ∼PY

[
W1(PX|Y , P

g
X|Y )

]
where W1 is the Wasserstein-1 distance.
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Posterior sampling using cGANs

Steps:

I Acquire samples Sx = {x1, ...,xN}, where xi ∼ P prior
X .

I Use forward map F to generate paired dataset

S = {(x1,y1), ..., (xN ,yN )} where yn = F(xn) + noise.

I Train a cGAN on S.

I For a new test measurement y, generate samples using g∗.

I Evaluate statistics using Monte Carlo.
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Solving the inverse heat conduction equation

Consider the PDE

∂u(s, t)

∂t
−∇ · (κ(s)∇u(s, t)) = 0, ∀ (s, t) ∈ (0, 2π)2 × (0, 1]

u(ξ, 0) = u0(s), ∀ s ∈ (0, 2π)2

u(ξ, t) = 0, ∀ s ∈ ∂(0, 2π)2 × (0, 1]

I x: discrete initial temperature field.

I y: noisy discrete final temperature field.

I F : Finite difference solver for the PDE.

I We assume a constant κ.
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Inferring initial condition: parametric prior

Assuming x to given by a rectangular inclusion and Nx = Ny = 28× 28 = 784

Training samples:
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We don’t have clean y in real problems!
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Inferring initial condition: parametric prior

Testing trained cGAN (statistics with 800 z samples)

y x ref. mean ref. SD
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Inferring initial condition: non-parametric prior

Assuming x to given by (heat stamped) MNIST handwritten digits and
Nx = Ny = 28× 28 = 784

Training samples:
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cGAN trained using latent dimension Nz = 100.
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Inferring initial condition: non-parametric prior

Testing trained cGAN (statistics with 800 z samples)
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Generalization

Generalization: cGAN trained on Set A gives good predictions on another distinct
Set B, possibility sampled from a different distribution.

We can prove1 the following: Assume
I The true (regularized) inverse map F−1 is spatially local.
I Set A and Set B contain samples with similar local spatial features.
I A cGAN train on Set A, and is also spatially local.

Then the cGAN can generalize well to Set B.

X Y

Local 
dependence

1: The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse
problems (D. Ray, D. Patel, H. Ramaswamy, A. A. Oberai); preprint 2022.
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Generalization

cGAN trained on MNIST, tested on notMNIST

y x mean SD
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Conclusion

I What do we gain?
I Ability to represent and encode complex prior data.

I Dimension reduction since Nz � Nx.

I Sampling from cGAN is quick and easy.

I Need (x,y) pairs to train – supervised algorithm.

I Generalizability – training on smaller dataset.

I Currently testing algorithm on several other physics-based and medical
applications.

Questions?
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Special architecture of generator

I U-Net architecture when x, y have tensored (image-like) structure.

I z injected through conditional instance normalization:
I Can choose Nz independent of Ny .
I Introduce stochasticity at multiple scales of U-Net.
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	Appendix

