VarMiON: Variationally mimetic operator network

Deep Ray

Department of Mathematics
University of Maryland, College Park

Email: deepray@umd.edu
Website: deepray.github.io

Jointly with Dhruv Patel, Michael Abdelmalik, Assad A. Oberai \& Thomas J. R. Hughes

Supported by ARO grant W911NF2010050.

Data-Driven Benchmarks Workshop, USC April 6-7, 2023

- Consider a generic linear elliptic PDE:

$$
\begin{aligned}
\mathcal{L}(u(\boldsymbol{x}) ; \theta(\boldsymbol{x})) & =f(\boldsymbol{x}), & & \forall \boldsymbol{x} \in \Omega, \\
\mathcal{B}(u(\boldsymbol{x}) ; \theta(\boldsymbol{x})) & =\eta(\boldsymbol{x}), & & \forall \boldsymbol{x} \in \Gamma_{\eta}, \\
u(\boldsymbol{x}) & =0, & & \forall \boldsymbol{x} \in \Gamma_{g},
\end{aligned}
$$

where $f \in \mathcal{F} \subset L^{2}(\Omega), \eta \in \mathcal{N} \subset L^{2}\left(\Gamma_{\eta}\right), \theta \in \mathcal{T} \subset L^{\infty}(\Omega)$.

- The variational formulation: find $u \in \mathcal{V} \subset H_{g}^{1}$ such that $\forall w \in \mathcal{V}$,

$$
a(w, u ; \theta)=(w, f)+(w, \eta)_{\Gamma_{\eta}}
$$

- The solution operator is

$$
\begin{aligned}
\mathcal{S}: \mathcal{X}=\mathcal{F} \times \mathcal{T} \times \mathcal{N} & \longrightarrow \mathcal{V} \subset H_{g}^{1} \\
(f, \theta, \eta) & \mapsto u(. ; f, \theta, \eta)
\end{aligned}
$$

This mapping can be non-linear in θ.

- Evaluate approximate solution in finite-dimensional space $\mathcal{V}^{h}=\operatorname{span}\left\{\phi_{i}(\boldsymbol{x}): 1 \leq i \leq q\right\}$.
- Discrete weak formulation: find $u^{h} \in \mathcal{V}^{h}$ such that $\forall w^{h} \in \mathcal{V}^{h}$,

$$
a\left(w^{h}, u^{h} ; \theta^{h}\right)=\left(w^{h}, f^{h}\right)+\left(w, \eta^{h}\right)_{\Gamma_{\eta}}
$$

- Any function $v^{h} \in \mathcal{V}^{h}$ can be written as

$$
v^{h}(\boldsymbol{x})=\boldsymbol{V}^{\top} \boldsymbol{\Phi}(\boldsymbol{x}), \quad \boldsymbol{V}=\left(v_{1}, \cdots, v_{q}\right)^{\top}, \quad \boldsymbol{\Phi}(\boldsymbol{x})=\left(\phi_{1}(\boldsymbol{x}), \cdots, \phi_{q}(\boldsymbol{x})\right)^{\top} .
$$

Plugging this into discrete weak form gives...

- Linear system of equations,

$$
\boldsymbol{K}\left(\theta^{h}\right) \boldsymbol{U}=\boldsymbol{M} \boldsymbol{F}+\widetilde{\boldsymbol{M}} \boldsymbol{N}
$$

where the matrices are given by

$$
K_{i j}\left(\theta^{h}\right)=a\left(\phi_{i}, \phi_{j} ; \theta^{h}\right), \quad M_{i j}=\left(\phi_{i}, \phi_{j}\right), \quad \widetilde{M}_{i j}=\left(\phi_{i}, \phi_{j}\right)_{\Gamma_{\eta}} \quad 1 \leq i, j \leq q
$$

- Discrete solution operator is

$$
\begin{aligned}
& \mathcal{S}^{h}: \mathcal{X}^{h}=\mathcal{F}^{h} \times \mathcal{T}^{h} \times \mathcal{N}^{h} \longrightarrow \mathcal{V}^{h} \\
&\left(f^{h}, \theta^{h}, \eta^{h}\right) \mapsto u^{h}\left(. ; f^{h}, \theta^{h}, \eta^{h}\right)=\boldsymbol{B}\left(f^{h}, \eta^{h}, \theta^{h}\right)^{\top} \boldsymbol{\Phi}
\end{aligned}
$$

where

$$
\boldsymbol{B}\left(f^{h}, \theta^{h}, \eta^{h}\right)=\boldsymbol{U}=\boldsymbol{K}^{-1}\left(\theta^{h}\right)(\boldsymbol{M} \boldsymbol{F}+\widetilde{\boldsymbol{M}} \boldsymbol{N})
$$

VarMiON will mimic this structure!

VarMiON

Evaluate (f, θ, η) at some fixed sensor nodes to get the discrete sample vectors

$$
\widehat{\boldsymbol{F}}=\left(f\left(\widehat{\boldsymbol{x}}_{1}\right), \cdots, f\left(\widehat{\boldsymbol{x}}_{k}\right)^{\top}, \widehat{\boldsymbol{\Theta}}=\left(\theta\left(\widehat{\boldsymbol{x}}_{1}\right), \cdots, \theta\left(\widehat{\boldsymbol{x}}_{k}\right)\right)^{\top}, \widehat{\boldsymbol{N}}=\left(\eta\left(\widehat{\boldsymbol{x}}_{1}^{b}\right), \cdots, \eta\left(\widehat{\boldsymbol{x}}_{k^{\prime}}^{b}\right)^{\top}\right.\right.
$$

Evaluate target solution (for training) at \tilde{k} output nodes per (f, θ, η)

$$
u^{h}\left(\boldsymbol{x}_{i} ; f^{h}, \theta^{h}, \eta^{h}\right) \quad 1 \leq i \leq \tilde{k}
$$

VarMiON

The network is comprises several sub-networks with latent dimension p :

- Non-linear branch net: $\widehat{\boldsymbol{\Theta}} \mapsto \boldsymbol{D}(\widehat{\boldsymbol{\Theta}}) \in \mathbb{R}^{p \times p}$
- Two linear branches with learnable matrices $\boldsymbol{A}, \widetilde{\boldsymbol{A}}$
- Non-linear trunk (basis of VarMiON): $\boldsymbol{x} \mapsto \boldsymbol{\tau}(\boldsymbol{x})=\left(\tau_{1}(\boldsymbol{x}), \cdots \tau_{p}(\boldsymbol{x})\right)^{\top}$

VarMiON

VarMiON operator is

$$
\begin{aligned}
\widehat{\mathcal{S}}: \mathbb{R}^{k} \times \mathbb{R}^{k} \times \mathbb{R}^{k^{\prime}} & \longrightarrow \mathcal{V}^{\tau}=\operatorname{span}\left\{\tau_{i}(\boldsymbol{x}): 1 \leq i \leq p\right\} \\
(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}}) & \mapsto \widehat{u}(. ; \widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})=\boldsymbol{\beta}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})^{\top} \boldsymbol{\tau}
\end{aligned}
$$

where

$$
\boldsymbol{\beta}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{H}})=\boldsymbol{D}(\widehat{\boldsymbol{\Theta}})(\boldsymbol{A} \widehat{\boldsymbol{F}}+\widetilde{\boldsymbol{A}} \widehat{\boldsymbol{N}})
$$

VarMiON

VarMiON operator is

$$
\begin{aligned}
\widehat{\mathcal{S}}: \mathbb{R}^{k} \times \mathbb{R}^{k} \times \mathbb{R}^{k^{\prime}} & \longrightarrow \mathcal{V}^{\tau}=\operatorname{span}\left\{\tau_{i}(\boldsymbol{x}): 1 \leq i \leq p\right\} \\
(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}}) & \mapsto \widehat{u}(. ; \widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})=\boldsymbol{\beta}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})^{\top} \boldsymbol{\tau}
\end{aligned}
$$

where

$$
\boldsymbol{\beta}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{H}})=\boldsymbol{D}(\widehat{\boldsymbol{\Theta}})(\boldsymbol{A} \widehat{\boldsymbol{F}}+\widetilde{\boldsymbol{A}} \widehat{\boldsymbol{N}})
$$

Compare this to the discrete solution operator:

$$
\begin{aligned}
\mathcal{S}^{h}: \mathcal{F}^{h} & \times \mathcal{T}^{h} \times \mathcal{N}^{h} \longrightarrow \mathcal{V}^{h} \\
& \left(f^{h}, \theta^{h}, \eta^{h}\right) \mapsto u^{h}\left(. ; f^{h}, \theta^{h}, \eta^{h}\right)=\boldsymbol{B}\left(f^{h}, \eta^{h}, \theta^{h}\right)^{\top} \boldsymbol{\Phi}
\end{aligned}
$$

where

$$
\boldsymbol{B}\left(f^{h}, \theta^{h}, \eta^{h}\right)=\boldsymbol{K}^{-1}\left(\theta^{h}\right)(\boldsymbol{M} \boldsymbol{F}+\widetilde{\boldsymbol{M}} \boldsymbol{N})
$$

VarMiON

In comparison with the variational formulation

- Can prove* \boldsymbol{D} is the reduced order counterpart of $\boldsymbol{K}^{-1}(p \ll q)$
- While the basis $\boldsymbol{\Phi}$ are fixed, $\boldsymbol{\tau}$ are learned from training data.

In comparison with a vanilla DeepONet

- DeepONet typically has a single nonlinear branch for inputs.
- VarMiON explicitly constructs matrix operators. DeepONet does not.

[^0]
Error Estimates

Define the $\left(L^{2}\right)$ generalization error for any $(f, \theta, \eta) \in \mathcal{X}$

$$
\mathcal{E}(f, \theta, \eta):=\|\mathcal{S}(f, \theta, \eta)-\widehat{\mathcal{S}}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})\|_{L^{2}} .
$$

Generalization error estimate (Patel et al., 2022)

If $\mathcal{X}:=\mathcal{F} \times \mathcal{T} \times \mathcal{N}$ is compact, the non-linear branch is Lipschitz, i.e.,

$$
\left\|\boldsymbol{D}(\widehat{\boldsymbol{\Theta}})-\boldsymbol{D}\left(\widehat{\boldsymbol{\Theta}}^{\prime}\right)\right\|_{2} \leq L_{D}\left\|\widehat{\boldsymbol{\Theta}}-\widehat{\boldsymbol{\Theta}}^{\prime}\right\|_{2} .
$$

Then, the generalization error can be bounded as

$$
\mathcal{E}(f, \theta, \eta) \leq \mathcal{C}\left(\epsilon_{h}+\epsilon_{s}+\sqrt{\epsilon_{t}}+\frac{1}{k^{\alpha / 2}}+\frac{1}{\left(k^{\prime}\right)^{\alpha^{\prime} / 2}}+\frac{1}{(\tilde{k})^{\tilde{\alpha} / 2}}\right)
$$

where
$\epsilon_{h} \rightarrow$ numerical error in training data
$\epsilon_{s} \rightarrow$ covering estimate
$\epsilon_{t} \rightarrow$ training error
$k, k^{\prime}, \tilde{k} \rightarrow$ interior, boundary and output nodes
$\alpha, \alpha^{\prime}, \tilde{\alpha} \rightarrow$ quadrature convergence rates

Steady-state heat conduction

$$
\begin{aligned}
-\nabla \cdot(\theta(\boldsymbol{x}) \nabla u(\boldsymbol{x})) & =f(\boldsymbol{x}), & & \forall \boldsymbol{x} \in \Omega, \\
\theta(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) & =\eta(\boldsymbol{x}), & & \forall \boldsymbol{x} \in \Gamma_{\eta}, \\
u(\boldsymbol{x}) & =0, & & \forall \boldsymbol{x} \in \Gamma_{g} .
\end{aligned}
$$

- Input: thermal conductivity θ, heat sources f, and heat flux η. Output: temperature u.
- Inputs: Gaussian Random Fields.
- Networks with two inputs (θ, f) and three inputs (θ, f, η).
- Compare VarMiON $(p=100)$ and vanilla DeepONet.
- Similar number of network parameters. Identical trunk architecture.
- Robustness: sampling (spatially uniform or random) and trunk functions (ReLU or RBF).

Numerical Example: Two Inputs

- 10,000 samples generated using Fenics.
- 9,000 for training/validation and 1,000 for testing.
- Average value of relative L_{2} error reported below.

Case	Model	Number of parameters	Relative L_{2} error
Randomly sampled input	DeepONet	111,248	$1.07 \pm 0.39 \%$
with ReLU Trunk	VarMiON	109,077	$\mathbf{0 . 9 6} \pm \mathbf{0 . 2 5} \%$
Uniformly sampled input	DeepONet	49,928	$1.98 \pm 0.79 \%$
with ReLU Trunk	VarMiON	46,345	$\mathbf{1 . 0 1} \pm \mathbf{0 . 3 9} \%$
Uniformly sampled input	DeepONet	17,911	$1.39 \pm 0.60 \%$
with RBF Trunk	VarMiON	17,409	$\mathbf{0 . 8 4} \pm \mathbf{0 . 4 0} \%$

Density of scaled L_{2} error (ReLU trunk and uniform spatial sampling).

Predictions by VarMiON and DeepONet.

- Input functions f, θ and η.
- 10,000 samples generated using Fenics.
- 9,000 for training/validation and 1,000 for testing \rightarrow same as two input case!
- Average value of relative L_{2} error reported below.

Case	Model	Number of parameters	Relative L_{2} error
Uniformly sampled input	DeepONet	31,143	$6.29 \pm 3.43 \%$
with RBF Trunk	VarMiON	31,849	$\mathbf{2 . 3 6} \pm \mathbf{1 . 1 3} \%$

Numerical Example: Three inputs

Density of scaled L_{2} error (RBF trunk and uniform spatial sampling).

Predictions by VarMiON and DeepONet.

Model Relative L^{2} error Relative H^{1} error
VarMiON
$3.21 \pm 0.76 \%$
$13.4 \pm 1.38 \%$
CVarMiON
$6.37 \pm 0.87 \%$
$6.85 \pm 0.98 \%$

- VarMiON: an operator network that mimics variational formulation.
- Takes the form of a reduced order model.
- Precise specification of the branch network - depends on weak form of PDE.
- Error analysis reveals important components - currently extending to H^{1} training.
- Numerical results point to better and more robust performance.
- Several extensions: nonlinear operators, physics-informed residuals, time-dependent problems, hyperbolic systems, and specification of geometry.

1. For $1 \leq j \leq J$, consider distinct samples $\left(f_{j}, \theta_{j}, \eta_{j}\right) \in \mathcal{X}$.
2. Obtain the discrete approximations $\left(f_{j}^{h}, \theta_{j}^{h}, \eta_{j}^{h}\right) \in \mathcal{X}^{h}$.
3. Find the discrete numerical solution $u_{j}^{h}=\mathcal{S}^{h}\left(f_{j}^{h}, \theta_{j}^{h}, \eta_{j}^{h}\right)$.
4. Choose output nodes $\left\{\boldsymbol{x}_{l}\right\}_{l=1}^{L}$ to sample the numerical solution $u_{j l}^{h}=u_{j}^{h}\left(\boldsymbol{x}_{l}\right)$.
5. Generate the input vectors ($\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}}_{j}$).
6. Collect input \& output to form training set with $J \times L$ samples

$$
\mathbb{S}=\left\{\left(\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}}_{j}, \boldsymbol{x}_{l}, u_{j l}^{h}\right): 1 \leq j \leq J, 1 \leq l \leq L\right\}
$$

Find the network weights that minimize the loss function

$$
\Pi(\boldsymbol{\psi})=\frac{1}{J} \sum_{j=1}^{J} \Pi_{j}(\boldsymbol{\psi}), \quad \Pi_{j}(\boldsymbol{\psi})=\sum_{l=1}^{L} w_{l}\left(u_{j l}^{h}-\widehat{\mathcal{S}}_{\psi}\left(\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}}_{j}\right)\left[\boldsymbol{x}_{l}\right]\right)^{2} .
$$

where ψ are all the trainable parameters of the VarMiON.

Error Estimates

The generalization error for any $(f, \theta, \eta) \in \mathcal{X}$

$$
\mathcal{E}(f, \theta, \eta):=\|\mathcal{S}(f, \theta, \eta)-\widehat{\mathcal{S}}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})\| .
$$

Split into four errors:

$$
\begin{aligned}
\mathcal{E}(f, \theta, \eta) \leq & \left\|\mathcal{S}(f, \theta, \eta)-\mathcal{S}\left(f_{j}, \theta_{j}, \eta_{j}\right)\right\| \longrightarrow \text { Stability of } \mathcal{S} \\
& +\left\|\mathcal{S}\left(f_{j}, \theta_{j}, \eta_{j}\right)-\mathcal{S}^{h}\left(f_{j}^{h}, \theta_{j}^{h}, \eta_{j}^{h}\right)\right\| \longrightarrow \text { Numerical error in generating data } \\
& \left.+\| \mathcal{S}^{h}\left(f_{j}^{h}, \theta_{j}^{h}, \eta_{j}^{h}\right)-\widehat{\mathcal{S}}\left(\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}}\right)_{j}\right) \| \longrightarrow \text { Training error of VarMiON } \\
& +\left\|\widehat{\mathcal{S}}\left(\widehat{\boldsymbol{F}}_{j}, \widehat{\boldsymbol{\Theta}}_{j}, \widehat{\boldsymbol{N}_{j}}\right)-\widehat{\mathcal{S}}(\widehat{\boldsymbol{F}}, \widehat{\boldsymbol{\Theta}}, \widehat{\boldsymbol{N}})\right\| \longrightarrow \text { Stability of VarMiON } \widehat{\mathcal{S}}
\end{aligned}
$$

[^0]: * Variationally Mimetic Operator Networks; Patel, R, Abdelmalik, Hughes, Oberai; 2022 (arXiv:2209.12871)

