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A brief outline

Artificial viscosity in DG schemes
Multilayer perceptrons (MLPs)

A deep viscosity estimator for DG schemes
Artificial viscosity for global schemes

Extensions
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Artificial viscosity for DG schemes



Handling Gibbs oscillations

time =0
3
2
1
El
0
-1
-2
0 05 1 15
X
time=1
3
R
V
1
E]
0
-1
— Exact
— Numerical
-2
0 0.5 1 15
X

Consider the conservation law
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Discontinuity + high-order solver
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Spurious oscillations
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Handling Gibbs oscillations

. time =0 Consider the modified PDE
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Handling Gibbs oscillations

. time =0 Consider the modified PDE
i) 9. 0 el

9t T 95 = ox (h5x)

. Issues:

Where to introduce viscosity?
How much viscosity?

0 05 1 15 2
X
ime=1 ime=1 ime=1
3 time 3 time 3 time
2 N /\ 2 A 2
V
1 1 1
E} E} E}
0 0 0
1 -1 -1
— Exact — Exact — Exact
— Numerical — Numerical — Numerical
2 2 -2
0 05 1 15 2 0 0.5 1 15 2 0 05 1 15 2
X X X
nw=0 n=>5.0e—4 n=1.0e—-3

Data-driven artificial viscosity in high-order solvers



Artificial viscosity in DG schemes

For the modified conservation law

%+v.f=v.g, g=1q. q=vu

K
Solution approximated on each element Dy, Q@ = |J Dk
k=1

K N
u(x, t) = un(x,t) = @ ufi(x us(x, ) = uf(t)sf(x)
k=1 i=1

where {¢X}N  is a basis of order m.

Solve ODE for nodal/modal coefficient vector uk = [uf, ..., uk]"

—— =Lup), 1<k<K
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Popular viscosity models

Highest modal decay (MDH) model [Persson and Peraire, 2006]:

Based on the decay of modal coefficients in each element

lu = G51%2p,) . _—
Sk=——m— — fraction of energy in highest modes
”uhH/_z(Dk)

For sk = log1o(Sk)
0 if Sk < 89 — Ck,

1 . ﬂ'(Sk — So) .
1= Hmax | 3 (1 + sin ( 26, if so — ¢k < sk < Sy + Ck,
1

if so+ ¢k < Sk

where sy = —ca — 4 logyo(m).
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Popular viscosity models

Highest modal decay (MDH) model [Persson and Peraire, 2006]:

Based on the decay of modal coefficients in each element

lu = G51%2p,) . _—
Sk=——m— — fraction of energy in highest modes
”uhH/_z(Dk)

For sk = log1o(Sk)
0 if Sk < S¢ — Ck,

1 — .
W= fbmax §<1+sin (W(Skz—CS(J))) if o — ¢k < sk < 8 + Cx,
K
1

if so+ ck < Sk
where sy = —ca — 4 logyo(m).

Problem-dependent parameters
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Popular viscosity models

Averaged modal decay (MDA) model [Kickner et al., 2011]:

Can be seen as an improvement over MDH.

1 ifr<1;,
M = max 1—7-;1 |f1§7'<3,
0 f3<r

where the "local" smoothness estimator 7 is obtained by solving local
optimization problems.

Problem-dependent parameter
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Popular viscosity models

Entropy viscosity (EV) model [Guermond et al., 2011]:
Based on the entropy residual for the pair (n(u), F(u))

2
= min{igs s = 5 () max (mpx AL mpx )
where ="' V. F V.
A="ar T 2
e
A:méx n—|1ﬁ|/ﬂnd§2‘

Problem-dependent parameters
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Popular viscosity models

If problem-dependent parameters are not appropriately prescribed:
Re-appearance of spurious oscillations.
Excessive smearing in smooth regions.

Idea: Let a neural network estimate the local viscosity.

Data-driven artificial viscosity in high-order solvers



Multilayer perceptrons



Neural networks: supervised learning

Aim: Approximate a function

F:X—Y, XeR" YeR" given T = {(X;, Y)}i.
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Neural networks: supervised learning

Aim: Approximate a function
F:X—Y, XcR’ YcR™ given T = {(X;, Y)}i.

Multilayer perceptron (MLP):

S |

< = -
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=} - —»| g — |2 N
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Hidden a%r 1 Hidden Layer 2

z=wX+b— of(2)
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Neural networks: supervised learning

Aim: Approximate a function
F:X—Y, XcR’ YcR™ given T = {(X;, Y)}i.

Multilayer perceptron (MLP):

ReLU v Leaky ReLU

max(0, z)

v =100

=1

v=1

Logistic fn.
(14evm)t Tanh(x)

Data-driven artificial viscosity in high-order solvers



Neural networks: supervised learning

Aim: Approximate a function
F:X—Y, XcR’ YcR™ given T = {(X;, Y)}i.
Multilayer perceptron (MLP):
Y=0oH0cAoH" 0. .0 Ao H'(X), H'X)=WX+b.

Output function O:

Regression — ldentity

Regression+positivity ~ — Softplus: x; — In(1 + €f)

Classification — Softmax: x; — o
2 €
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Neural networks: supervised learning

Aim: Approximate a function

F:X—Y, XcR' YcR"™ given T={(X,Y)}.

Training: Find the network parameters 8 = {W' b'},<,<, such that a
suitable loss function

~

L= L(Y;, Y(X;0))

is minimized over the training set T.

Hyperparameters:
Network size — depth and width
Activation function
Loss function
Regularization technique — to avoid overfitting
Training and validation datasets
Optimizer: Stochastic gradient descent, AdaGrad, ADAM, etc.
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A deep viscosity estimator



Training an MLP to predict viscosity

Target function F : solution in Dy fegression, win Dy

Network architecture:
Input X € RN: nodal values of uin Dy, N = N(m).
5 hidden layers with Leaky RelLU activation.
Output Y € RN: nodal values of j in Dy.

Scaling is important for generalization:

scale u MLP . rescale
u | |E{wT e
A = max |f/(u)|
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Training an MLP to predict viscosity

What about the training set T?

Using numerical solution of conservation laws (only linear adv.
and Burgers).

Target viscosity: viscosity corresponding to "best" model among
MDH, MDA, EV.

Different network for each degree m.

Note:
The network for a given m is trained offline.
The same network is used for any conservation law.
No further tuning required after training.

The trained network can be interpreted as an automatic, dynamic and
local adaptor between MDH, MDA and EV.

Controlling oscillations in high-order Discontinuous Galerkin schemes using artificial viscosity tuned
by neural networks, by Discacciati, Hesthaven and R.; JCP, 2020.
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Numerical setup

DG scheme with Legendre basis (Jacobi polynomials in 2D).
Triangular mesh in 2D.

Local Lax-Friedrich numerical flux.

Appropriate proxy variable for systems (p for Euler egns.)

Time integration with 5 stage 4th-order low-storage explicit
Runge-Kutta scheme.

Parameters for standard methods are fixed.
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2D KPP equations: Rotating wave

f(u) = (sinu,cosu), m=4
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2D KPP equations: Rotating wave

f(u) = (sinu,cosu), m=4
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2D Euler equations: Riemann Problem config. 12

MDA MLP
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Global spectral schemes



Spectral methods for conservation laws

Consider the conservation law (periodic)

@ N of(u)
ot ox

=0, xel0,2r]

Define N collocation points (uniform mesh) x; = ZW”/, j=0,.N—1.
Using DFT, approximate the solution using the interpolant

N/2 ' o N-T
u(x, t) = up(x, t) = o > k(te™™,  k(t) = = 2= Un (xj, e~
k=—N/2 j=0
Solve for the coefficients
dun(t) _
—ar Dfy(t) = 0
up(t) = [un(Xo,t), ..., Un(XN—1, t)]T

fo(t) = [f(un(x0, 1)), .., F(un(xn—1, )] "
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Spectral methods for conservation laws

DG scheme

Local basis in each element.

For smooth solutions

Error ~ O(h™1/?)

Local Gibbs oscillations

15

Fourier spectral scheme
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Global basis.
For smooth solutions

Error ~ O(W")Vp >0

Global Gibbs oscillations
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Handling Gibbs oscillations: filtering

Define the filter of order p

el=hx") ifo < x <1
= - fix 5 =10
o(x {o, if x > 1 (fix = 10)

Modify the Fourier coefficients as

. K| N_, _N
Uk—)O'p(N—/z N 5 = kSE
)

For example, solving the Burgers equation (N=600
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Handling Gibbs oscillations: artificial viscosity

Modify scheme as

dup(t
WD | Dhy(t) = Dlmn(t) © Dun(1)
pa(t) = [ua(X0, ), s pn(Xn—1, )]
Issue: Determining px(x;, t) in the absence of local regularity
estimates.

One approach: Estimate 14(x;, t) based on entropy production (EV)
Existence of an entropy pair
Parameter tuning
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Handling Gibbs oscillations: artificial viscosity + filtering

Proposed approach:
1. Train a network to classify the "local" regularity 7; on a stencil Sj7

if u is discontinuous
ifueC®\ C'
ifuecC'\ C?

if ue C?

7'/:

S~ O N =

2. Apply a high order exponential filter of order p = 14
3. Estimate artificial viscosity (inspired by MDA)

0.5, it =1,

= Qm)hmax|f(u)l, Q) = {025  if =2,
xXeS!H

! 0.0, if 77>3
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Handling Gibbs oscillations: artificial viscosity + filtering

Proposed approach:
Input stencil S/ with 7 points.
Training data sampled from the following periodic functions on [0, 27]

a if | x —n| < a
Ax) =3¢ - X =7l < &,
a if | x — 7| > as,

ai|lx —n|— aja if | x —n| < a
fg(x): 1] 7| 143 ! | 7| < as,

a|x — | — axas if | x — x| > as,
B(x) = 0.5a1|x — 7|? — ajas if [x — 7| < as,
° as|x — 7|? — apas — 0.585(ay —a2)  if|x — 7| > a3

fa(x) = sin(2xa)

We don’t use solutions to conservation laws!
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Handling Gibbs oscillations: artificial viscosity + filtering

Proposed approach:
Input X € R”.
Output Y € R* — class probability.
3 hidden layers with ELU activation function.
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Numerical setup

Same network for all problems.
Time-marching using SSPRK-4.

In multi-D, network applied in a dimension-by-dimension manner
+ nodal minimum.

Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks,
by Schwander, Hesthaven and R.; JCP, 2021.
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Burgers equation: EV vs. MLP

—sin(6rx) if§ <x <2,

Uo(x) = .
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2D KPP equations: Rotating wave
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2D Euler equations: : Riemann Problem config. 12 (p based)
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Conclusion

Neural networks are useful for shock-capturing.

— Estimate viscosity
— Detect troubled-cells (R. and Hesthaven, 2019)

Deep learning can be used to enhance numerical algorithms.
Neural networks are great at detecting patterns.

Domain knowledge is valuable in constructing datasets.
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Future directions

Sub-cell resolution
MLP for DG schemes trained on one-u-per-element data.

Generate training data using methods estimating high-order
sub-cell artificial viscosity (Zeifang and Beck, 2021).
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Future directions

Sub-cell resolution
MLP for DG schemes trained on one-u-per-element data.

Generate training data using methods estimating high-order
sub-cell artificial viscosity (Zeifang and Beck, 2021).

Boundary conditions for spectral methods
Fourier spectral methods — domain doubling for periodicity.

MLP works on non-periodic problems on Chebyshev grids —
time-step restriction.

Fourier continuation using Gram polynomials (Bruno, CalTech).
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Future directions

Reduced order modelling

ROMs for conservation laws also suffer from spurious
osclliations.

Use an MLP-based viscosity model to stabilize (Yu, Beihang
University)
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Future directions

Reduced order modelling

ROMs for conservation laws also suffer from spurious
osclliations.

Use an MLP-based viscosity model to stabilize (Yu, Beihang
University)

hp-adaptation
Demonstrated that MLPs can classify local smoothness.

Train networks to classify "best" local basis order in DG schemes
(Wang and R.)
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Questions?



DG viscosity smoothing

X

Dk—l Dk
Nodal viscosity predicted by MLP
Element-wise average
Continous viscosity after smoothing
Nodal smooth viscosity
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SVANN sampling and scaling
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SVANN: Computational cost
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