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A brief outline

I Artificial viscosity in DG schemes

I Multilayer perceptrons (MLPs)

I A deep viscosity estimator for DG schemes

I Artificial viscosity for global schemes

I Extensions
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Handling Gibbs oscillations
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Consider the conservation law
∂u
∂t + ∂u

∂x = 0

Discontinuity + high-order solver
⇓

Spurious oscillations
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Consider the modified PDE
∂u
∂t + ∂u

∂x = ∂
∂x

(
µ∂u
∂x

)
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Consider the modified PDE
∂u
∂t + ∂u

∂x = ∂
∂x

(
µ∂u
∂x

)
Issues:
I Where to introduce viscosity?
I How much viscosity?



Artificial viscosity in DG schemes

For the modified conservation law

∂u
∂t

+∇ · f = ∇ · g, g = µq, q = ∇u

Solution approximated on each element Dk , Ω =
K⋃

k=1
Dk

u(x , t) ≈ uh(x , t) =
K⊕

k=1

uk
h (x , t), uk

h (x , t) =
N∑

i=1

uk
i (t)φk

i (x)

where {φk
i }N

i=0 is a basis of order m.

Solve ODE for nodal/modal coefficient vector uk = [uk
1 , ...,u

k
N ]>

duk

dt
= L(u, µ), 1 ≤ k ≤ K
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Popular viscosity models

Highest modal decay (MDH) model [Persson and Peraire, 2006]:

Based on the decay of modal coefficients in each element

Sk =
‖uk

h − ũk
h‖2

L2(Dk )

‖uk
h‖2

L2(Dk )

→ fraction of energy in highest modes

For sk = log10(Sk )

µ = µmax


0 if sk < s0 − ck ,
1
2

(
1 + sin

(
π(sk − s0)

2ck

))
if s0 − ck ≤ sk ≤ s0 + ck ,

1 if s0 + ck ≤ sk

where s0 = −cA − 4 log10(m).

Problem-dependent parameters
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Popular viscosity models

Averaged modal decay (MDA) model [Klökner et al., 2011]:

Can be seen as an improvement over MDH.

µ = µmax


1 if τ < 1; ,

1− τ − 1
2

if 1 ≤ τ < 3,

0 if 3 ≤ τ

where the "local" smoothness estimator τ is obtained by solving local
optimization problems.

Problem-dependent parameter
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Popular viscosity models

Entropy viscosity (EV) model [Guermond et al., 2011]:

Based on the entropy residual for the pair (η(u),F(u))

µ = min{µη, µmax}, µη =
Cη
A

(
h
m

)2

max

(
max

Dk

|R(u)|,max
Dk

|H(u)|
)

where

R =
ηn − ηn−1

∆t
+
∇ ·Fn +∇ ·Fn−1

2

H =
(m

h

)
JFK · n

A = max
Ω

∣∣∣∣η − 1
|Ω|

∫
Ω

ηdΩ

∣∣∣∣
Problem-dependent parameters
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Popular viscosity models

If problem-dependent parameters are not appropriately prescribed:
I Re-appearance of spurious oscillations.
I Excessive smearing in smooth regions.

Idea: Let a neural network estimate the local viscosity.
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Neural networks: supervised learning

Aim: Approximate a function

F : X 7→ Y , X ∈ Rn, Y ∈ Rm given T = {(Xi ,Yi )}i .

I Multilayer perceptron (MLP):
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z = wX+b −→A (z)
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A
ct
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Neural networks: supervised learning

Aim: Approximate a function

F : X 7→ Y , X ∈ Rn, Y ∈ Rm given T = {(Xi ,Yi )}i .

I Multilayer perceptron (MLP):

ReLU

max(0, x)

Leaky ReLU
νx

ν = 1
ν = 10

ν = 100

Logistic fn.

(1 + e−νx)−1 Tanh(x)
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Neural networks: supervised learning

Aim: Approximate a function

F : X 7→ Y , X ∈ Rn, Y ∈ Rm given T = {(Xi ,Yi )}i .

I Multilayer perceptron (MLP):

Ŷ = O ◦ HL ◦ A ◦ HL−1 ◦ ... ◦ A ◦ H1(X ), H l (X̃ ) = W l X̃ + bl .

I Output function O:

Regression −→ Identity
Regression+positivity −→ Softplus: xi 7→ ln(1 + ex

i )

Classification −→ Softmax: xi 7→
ex

i∑
j ex

j
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Neural networks: supervised learning

Aim: Approximate a function

F : X 7→ Y , X ∈ Rn, Y ∈ Rm given T = {(Xi ,Yi )}i .

Training: Find the network parameters θ = {W l ,bl}1≤l≤L such that a
suitable loss function

L := L(Yi , Ŷ (Xi ;θ))

is minimized over the training set T.

Hyperparameters:
I Network size – depth and width
I Activation function
I Loss function
I Regularization technique – to avoid overfitting
I Training and validation datasets
I Optimizer: Stochastic gradient descent, AdaGrad, ADAM, etc.
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Training an MLP to predict viscosity

Target function F : solution in Dk
regression−−−−−−→ µ in Dk

Network architecture:
I Input X ∈ RN : nodal values of u in Dk , N = N(m).
I 5 hidden layers with Leaky ReLU activation.
I Output Y ∈ RN : nodal values of µ in Dk .

Scaling is important for generalization:

u
u

max {|ui|}
µ
hΛ

µ
scale MLP rescale

Λ = max |f ′(u)|
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Training an MLP to predict viscosity

What about the training set T?
I Using numerical solution of conservation laws (only linear adv.

and Burgers).
I Target viscosity: viscosity corresponding to "best" model among

MDH, MDA, EV.
I Different network for each degree m.

Note:
I The network for a given m is trained offline.
I The same network is used for any conservation law.
I No further tuning required after training.

The trained network can be interpreted as an automatic, dynamic and
local adaptor between MDH, MDA and EV.

Controlling oscillations in high-order Discontinuous Galerkin schemes using artificial viscosity tuned
by neural networks, by Discacciati, Hesthaven and R.; JCP, 2020.
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Numerical setup

I DG scheme with Legendre basis (Jacobi polynomials in 2D).

I Triangular mesh in 2D.

I Local Lax-Friedrich numerical flux.

I Appropriate proxy variable for systems (ρ for Euler eqns.)

I Time integration with 5 stage 4th-order low-storage explicit
Runge-Kutta scheme.

I Parameters for standard methods are fixed.
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1D Euler equations: Shu-Osher (density based µ prediction)
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2D KPP equations: Rotating wave

f (u) = (sin u, cos u), m = 4
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2D KPP equations: Rotating wave
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2D Euler equations: Riemann Problem config. 12

m = 3
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Spectral methods for conservation laws

Consider the conservation law (periodic)

∂u
∂t

+
∂f (u)

∂x
= 0, x ∈ [0,2π]

Define N collocation points (uniform mesh) xj = 2π
N j , j = 0, ...N − 1.

Using DFT, approximate the solution using the interpolant

u(x , t) ≈ uh(x , t) =
1

2π

N/2∑
k=−N/2

ûk (t)eikx , ûk (t) =
2π
N

N−1∑
j=0

uh(xj , t)e−ikxj

Solve for the coefficients

duh(t)
dt

+ Dfh(t) = 0

uh(t) = [uh(x0, t), ...,uh(xN−1, t)]>

fh(t) = [f (uh(x0, t)), ..., f (uh(xN−1, t))]>
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Spectral methods for conservation laws

DG scheme

I Local basis in each element.

I For smooth solutions

Error ∼ O(hm+1/2)

I Local Gibbs oscillations
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I Global basis.

I For smooth solutions

Error ∼ O(hp) ∀ p ≥ 0

I Global Gibbs oscillations
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Handling Gibbs oscillations: filtering

Define the filter of order p

σ(x) =

{
e(−βxp) if 0 ≤ x ≤ 1,
0, if x > 1

(fix β = 10)

Modify the Fourier coefficients as

ûk → σp

( |k |
N/2

)
∀ − N

2
≤ k ≤ N

2
.

For example, solving the Burgers equation (N=600)

(a) Init. cond.

−4 −2 0 2 4
x
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u

(b) p=2
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x
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3

u

(c) p=4
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Handling Gibbs oscillations: artificial viscosity

Modify scheme as

duh(t)
dt

+ Dfh(t) = D(µh(t)� Duh(t))

µh(t) = [µh(x0, t), ..., µh(xN−1, t)]>

Issue: Determining µh(xj , t) in the absence of local regularity
estimates.

One approach: Estimate µh(xj , t) based on entropy production (EV)
I Existence of an entropy pair
I Parameter tuning
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Handling Gibbs oscillations: artificial viscosity + filtering

Proposed approach:
1. Train a network to classify the "local" regularity τj on a stencil S7

j

τj =


1 if u is discontinuous
2 if u ∈ C0 \ C1

3 if u ∈ C1 \ C2

4 if u ∈ C2

2. Apply a high order exponential filter of order p = 14
3. Estimate artificial viscosity (inspired by MDA)

µj = Q(τj)h max
x∈Sr

7

|f ′(u)|, Q(τj) =


0.5, if τj = 1,
0.25, if τj = 2,
0.0, if τj ≥ 3
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Handling Gibbs oscillations: artificial viscosity + filtering

Proposed approach:

Input stencil S7
j with 7 points.

Training data sampled from the following periodic functions on [0,2π]

f1(x) =

{
a1 if |x − π| ≤ a3,

a2 if |x − π| > a3,

f2(x) =

{
a1|x − π| − a1a3 if |x − π| ≤ a3,

a2|x − π| − a2a3 if |x − π| > a3,

f3(x) =

{
0.5a1|x − π|2 − a1a3 if |x − π| ≤ a3,

a2|x − π|2 − a2a3 − 0.5a2
3(a1 − a2) if |x − π| > a3

f4(x) = sin(2xa)

We don’t use solutions to conservation laws!
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Handling Gibbs oscillations: artificial viscosity + filtering

Proposed approach:
I Input X ∈ R7.
I Output Y ∈ R4 – class probability.
I 3 hidden layers with ELU activation function.
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Numerical setup

I Same network for all problems.

I Time-marching using SSPRK-4.

I In multi-D, network applied in a dimension-by-dimension manner
+ nodal minimum.

Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks,
by Schwander, Hesthaven and R.; JCP, 2021.
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Burgers equation: EV vs. MLP

u0(x) =

{
− sin(6πx) if 1

6 ≤ x ≤ 5
6 ,

0 otherwise
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2D KPP equations: Rotating wave
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2D Euler equations: : Riemann Problem config. 12 (ρ based)
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Conclusion

I Neural networks are useful for shock-capturing.
− Estimate viscosity
− Detect troubled-cells (R. and Hesthaven, 2019)

I Deep learning can be used to enhance numerical algorithms.

I Neural networks are great at detecting patterns.

I Domain knowledge is valuable in constructing datasets.
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Future directions

Sub-cell resolution
I MLP for DG schemes trained on one-µ-per-element data.

I Generate training data using methods estimating high-order
sub-cell artificial viscosity (Zeifang and Beck, 2021).

Boundary conditions for spectral methods
I Fourier spectral methods – domain doubling for periodicity.

I MLP works on non-periodic problems on Chebyshev grids –
time-step restriction.

I Fourier continuation using Gram polynomials (Bruno, CalTech).
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Future directions

Reduced order modelling
I ROMs for conservation laws also suffer from spurious

osclliations.

I Use an MLP-based viscosity model to stabilize (Yu, Beihang
University)

hp-adaptation
I Demonstrated that MLPs can classify local smoothness.

I Train networks to classify "best" local basis order in DG schemes
(Wang and R.)
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DG viscosity smoothing
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SVANN sampling and scaling

0 0.5 1 1.5 2 2.5 3
x

-5

0

5

f

f(x)
Fourier approx.
Original nodes
Shifted nodes

0 1 2 3 4 5
x

-4

-2

0

2

4

u

(a) Find line

0 1 2 3 4 5
x

-4

-2

0

2

4

u
#

(b) Rotate

0 1 2 3 4 5
x

-4

-2

0

2

4

u
*

(c) Scale

D. Ray Data-driven artificial viscosity in high-order solvers 33



SVANN: Computational cost
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